杨氏矩阵与钩子公式

转载 2015年07月07日 22:06:44

杨氏矩阵又叫杨氏图表,它是这样一个矩阵,满足条件:

 

(1)如果格子(i,j)没有元素,则它右边和上边的相邻格子也一定没有元素。

(2)如果格子(i,j)有元素a[i][j],则它右边和上边的相邻格子要么没有元素,要么有元素且比a[i][j]大。

 

1 ~ n所组成杨氏矩阵的个数可以通过下面的递推式得到:

 

 

如图就是n=3时的杨氏矩阵。

 

 

 

 

下面介绍一个公式,那就是著名的钩子公式

 

对于给定形状,不同的杨氏矩阵的个数为:n!除以每个格子的钩子长度加1的积。其中钩子长度定义为该格子

右边的格子数和它上边的格子数之和。

 

题目:http://poj.org/problem?id=1825

 

 

介绍完了钩子公式,那么我们可以来做一道基础题了。

 

题目:给四行,第一行放5个数字,第二行放三个数字,第三行放3个数字,第四行放1个数字,都是左对齐的排列,

     现有1~12共12个数字,要求放到这四行中,从上到下,从左到右都是按小到大排列,问你共有几种排法?


() () () () ()

() () ()

() () ()

()

 

这个问题直接利用钩子公式解决即可。

 

 

杨氏矩阵既可以用来当堆,又可以当成平衡树。通常杨氏矩阵会涉及到两个问题:

 

(1)在杨氏矩阵中查找值为x的元素      (2)在杨氏矩阵中找第K大的元素

 

对于第一个问题,其实有两种方法,第一种方法就是二分查找法,这种方法的时间效率不是很好。第二种方法就是类

堆查找法。方法是这样的:从矩阵的右上角出发,对于元素a[i][j],如果a[i][j]==x,则找到元素x,直接返

回; 如果a[i][j]> x,则向下移动,即继续比较a[i+1][j]与x;如果a[i][j] < x,则向左移动,即继续比

较a[i][j-1]与x。该算法的时间复杂度是O(m+n)。

bool Find(int a[][N],int n,int m,int x)
{
    assert(a != NULL && n > 0 && m > 0);
    int row = 0;
    int col = m - 1;
    while(row <= n - 1 && col >= 0)
    {
        if(a[row][col] == x) return true;
        else if(a[row][col] > x) col--;
        else row++;
    }
    return false;
}


 

对于第二个问题,首先,二分枚举找到一个数x,它比杨氏矩阵中k个数大;然后,利用类堆查找法找到刚好小于x的

元素。该算法的时间复杂度为O((m+n)log(mn)),但不需要额外存储空间。

int get_order(int a[][N],int n,int m,int k)
{
    int row = 0;
    int col = m - 1;
    int order = 0;
    while(row <= n - 1 && col >= 0)
    {
        if(a[row][col] < k)
        {
            order += col + 1;
            row++;
        }
        else col--;
    }
    return order;
}

int Find_Kth_Num(int a[][N],int n,int m,int k)
{
    int low = a[0][0];
    int high = a[n-1][m-1];
    int order = 0;
    int mid = 0;
    do
    {
        mid = (low + high) >> 1;
        order = get_order(a,n,m,mid);
        if(order == k) break;
        else if(order > k) high = mid - 1;
        else low = mid + 1;
    }while(1);
    int row = 0;
    int col = m - 1;
    int ret = mid;
    while(row <= n - 1 && col >= 0)
    {
        if(a[row][col] < mid)
        {
            ret = max(ret,a[row][col]);
            row++;
        }
        else col--;
    }
    return ret;
}


版权声明:本文为博主原创文章,未经博主允许不得转载。

杨氏矩阵中查找某个数

#include #include int m,n,t,i,j; int a[1005][1005]; int main(){ while(scanf("%d%d",&m,&n)!=EOF...
  • chen895281773
  • chen895281773
  • 2013年03月30日 16:45
  • 1182

POJ 2279 Mr. Young's Picture Permutations(杨氏矩阵和钩子公式)

Mr. Young's Picture Permutations Time Limit: 1000MS Memory Limit: 65536K Total Su...
  • yiya_eryi
  • yiya_eryi
  • 2017年07月26日 20:38
  • 291

杨氏矩阵

行和列分别递增的矩阵有一个专有名词叫杨氏矩阵,是由剑桥大学数学家杨表在1900年提出的,而在这个矩阵的查找俗称杨氏矩阵的查找。 定位法:时间复杂度是O(m+n)#include using name...
  • helloworlddm
  • helloworlddm
  • 2016年07月16日 20:40
  • 206

JAVA API系列----Math和Random类

·Math类包含了所有用于几何和三角运算的方法。
  • yitongfling
  • yitongfling
  • 2011年03月25日 10:58
  • 382

杨氏矩阵的基本操作

对于杨氏矩阵,是一种很强大的数据结构,它既可以用来当堆,又可以用平衡树的查询方法。   最常见的三种操作就是:插入,删除,查询。   对于插入操作: void Insert(int x,int y,i...
  • ACdreamers
  • ACdreamers
  • 2013年11月09日 17:34
  • 1785

杨氏矩阵与钩子公式

杨氏矩阵又叫杨氏图表,它是这样一个矩阵,满足条件:   (1)如果格子(i,j)没有元素,则它右边和上边的相邻格子也一定没有元素。 (2)如果格子(i,j)有元素a[i][j],则它右边和上边的相邻格...
  • ACdreamers
  • ACdreamers
  • 2013年11月08日 21:33
  • 6221

杨氏矩阵与钩子公式

杨氏矩阵又叫杨氏图表,它是这样一个矩阵,满足条件:   (1)如果格子(i,j)没有元素,则它右边和上边的相邻格子也一定没有元素。 (2)如果格子(i,j)有元素a[i][j],则它右边和上边的...
  • u013007900
  • u013007900
  • 2015年07月07日 22:06
  • 1001

杨氏矩阵

有一个二维数组.----杨氏矩阵 数组的每行从左到右是递增的,每列从上到下是递增的.在这样的数组中查找一个数字是否存在。时间复杂度小于O(N); 1 2 3 4 5 6 7 8 9#include  ...
  • qq_40192867
  • qq_40192867
  • 2018年01月18日 20:05
  • 8

poj 2279 杨氏矩阵,钩子公式

杨氏矩阵,钩子公式
  • sky_zdk
  • sky_zdk
  • 2017年05月10日 11:39
  • 294

POJ 2279 Mr. Young's Picture Permutations......杨氏矩阵+钩长公式??

杨氏矩阵+钩长公式
  • neighthorn
  • neighthorn
  • 2016年07月28日 11:44
  • 536
内容举报
返回顶部
收藏助手
不良信息举报
您举报文章:杨氏矩阵与钩子公式
举报原因:
原因补充:

(最多只允许输入30个字)