poj 1860 Currency Exchange

本文探讨了在一个允许货币兑换并收取手续费的系统中,如何通过反复交易实现货币金额的增长。关键在于找到所谓的正权回路,即一条路径上的货币价值能够不断累积。文章提供了一种算法实现,并通过示例代码展示了如何使用Bellman-Ford算法来检测这样的回路。
摘要由CSDN通过智能技术生成
题目大意

有多种汇币,汇币之间可以交换,这需要手续费,当你用100A币交换B币时,A到B的汇率是29.75,手续费
是0.39,那么你可以得到(100 - 0.39) * 29.75 = 2963.3975 B币。问s币的金额经过交换最终得到的s币金额数能否增加
货币的交换是可以重复多次的,所以我们需要找出是否存在正权回路,且最后得到的s金额是增加的

怎么找正权回路呢?(正权回路:在这一回路上,顶点的权值能不断增加即能一直进行松弛)

/***********************************************
 * Author: fisty
 * Created Time: 2015/2/13 20:13:52
 * File Name   : four_5.cpp
 *********************************************** */
/*题目大意

有多种汇币,汇币之间可以交换,这需要手续费,当你用100A币交换B币时,A到B的汇率是29.75,手续费
是0.39,那么你可以得到(100 - 0.39) * 29.75 = 2963.3975 B币。问s币的金额经过交换最终得到的s币金额数能否增加
货币的交换是可以重复多次的,所以我们需要找出是否存在正权回路,且最后得到的s金额是增加的
怎么找正权回路呢?(正权回路:在这一回路上,顶点的权值能不断增加即能一直进行松弛)
*/

#include <iostream>
#include <cstring>
#include <deque>
#include <cmath>
#include <queue>
#include <stack>
#include <list>
#include <map>
#include <set>
#include <string>
#include <vector>
#include <cstdio>
#include <bitset>
#include <algorithm>
using namespace std;
#define Debug(x) cout << #x << " " << x <<endl
#define Memset(x, a) memset(x, a, sizeof(x))
const int INF = 0x3f3f3f3f;
typedef long long LL;
typedef pair<int, int> P;
#define FOR(i, a, b) for(int i = a;i < b; i++)
#define MAX_N 200
#define EPS 1e-9
int n, m, s;
double v;

struct node{
    int u;
    int v;
    double cost;
    double rate;
}G[2*MAX_N];

bool Bellman_Ford(){
    bool lable;
    double d[MAX_N];
    FOR(i, 0, n+1) d[i] = 0.0;
    d[s] = v;
    while(d[s] <= v +EPS){
        lable = true;
        FOR(i, 0, m){
            double tmp = (d[G[i].u] - G[i].cost) * G[i].rate;
            if(d[G[i].v] + EPS < tmp){
                d[G[i].v] = tmp;
                lable = false;
            }
        }
        //不能继续松弛的话判断是否金钱大于初始值
        if(lable) return (d[s] - v) > 0;
    }
    return true;
}
int main() {
    //freopen("in.cpp", "r", stdin);
    cin.tie(0);
    ios::sync_with_stdio(false);
    while(cin >> n >> m >> s >>v){
        int A, B;
        double Rab,Cab, Rba, Cba;
        FOR(i, 0, m){
            cin >> A >> B >> Rab >> Cab >> Rba >> Cba;
            //A->B
            G[i].u = A;      G[i].v = B;
            G[i].rate = Rab; G[i].cost = Cab;
            //B->A
            G[i+m].u = B;      G[i+m].v = A;
            G[i+m].rate = Rba; G[i+m].cost = Cba;
        }
        m = m * 2;
        if(Bellman_Ford()){
            cout << "YES" << endl;
        }else{
            cout << "NO" << endl;
        }
    }
    return 0;
}


评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值