关闭

康托展开式

675人阅读 评论(0) 收藏 举报
分类:
格式: X=a[n]*(n-1)!+a[n-1]*(n-2)!+...+a[i]*(i-1)!+...+a[1]*0!
康托展开式用途:
       1:康托展开式是一个全排列到自然数双射(两个集合之间一一对应),常用于构建Hash表时候的时空压缩。
       2:康托展开式可用于计算当前按某一全序关系全排列中的位置,因此可逆。

对于第一条不多加解释,现在着重解释第二条。这里注意一点,康托展开式一般用在序列中所有元素不重复的情况。而重复的情况下,需要稍作调整(具体例子具体分析)。

举例
               3 5 7 4 1 2 9 6 8 展开为 98884。
               因为  X=2*8!+3*7!+4*6!+2*5!+0*4!+0*3!+2*2!+0*1!+0*0!=98884.

解释:

          排列的第一位是3,比3小的数有两个,以这样的数开始的排列有8!个,因此第一项为2*8!

          排列的第二位是5,比5小的数有1、2、3、4,由于3已经出现,因此共有3个比5小的数,这样的排列有7!个,因此第二项为3*7!

          以此类推,直至0*0!

     在这个例子中,全序关系为自然数大小的关系。其中第i个位置的权重为i!。每个位置的系数为当前位置逆序奇偶的个数。计算出来的康托展开式结果为该序列在按从大到小全排列中的位置(由于序列中每个数字都不同,所以得出的结构唯一。)。

康托展开式逆运算:
     可以利用康托展开式的结果直接定位某一排列在全排列中的位置,进而求出该全排列。


注:本文来自维基百科,并加入了自己的一些理解。
http://zh.wikipedia.org/wiki/%E5%BA%B7%E6%89%98%E5%B1%95%E5%BC%80






























0
0

查看评论
* 以上用户言论只代表其个人观点,不代表CSDN网站的观点或立场
    个人资料
    • 访问:125965次
    • 积分:2612
    • 等级:
    • 排名:第14453名
    • 原创:144篇
    • 转载:52篇
    • 译文:0篇
    • 评论:1条
    最新评论