数据结构笔记整理12.3

原创 2013年12月03日 21:28:12

二叉树

def:二叉树T是n个结点的有限集合,其中你>=0时,为空树,否则,其中有一个结点为根结点,其余结点划分为两个互相不相交的子集TL、TR,并且分别构成为左右子树的二叉树。【递归定义】

1、结点node:表示树中的元素,包括数据项及若干指向其子树的分支;

2、结点的度degree:结点拥有的子树;

4、叶子leaf:度为0的结点;

5、孩子child:结点子树的根为该结点的孩子

6、双亲parents:孩子结点的上层结点;

7、深度deepth:树中结点最大层次数;

8、满二叉树full binary tree :二叉树中所有的分支结点的度数都为2,并且叶子结点都在同一层次上;

9、完全二叉树complete binary tree :一个包含n个结点的二叉树中的每个结点都可以和满二叉树中的1~n个元素相对应,即为完全二叉树;

basic operations of Sequential storage 

/**************** 申明部分 ******************/
#include<stdio.h>
#include<string.h>
#include<math.h>
#include<stdlib.h>
#include<iostream.h>
#define MAX_TREE_SIZE 1000// 二叉树的最大结点数
#define OK 1
#define TRUE 1
#define ERROR 0
#define FALSE 0
#define ClearBiTree InitBiTree // 在顺序存储结构中,两函数完全一样




 Status InitBiTree(SqBiTree T)
 { // 构造空二叉树T。因为T是固定数组,不会改变,故不需要&
   int i;
   for(i=0;i<MAX_TREE_SIZE;i++)
     T[i]=Nil; // 初值为空
   return OK;
 }
void DestroyBiTree()
 { // 由于SqBiTree是定长类型,无法销毁
 }
Status CreateBiTree(SqBiTree T)//
 {
   int i=0;
 #if CHAR//假如输入的数据位字符类型
   int l;
   char s[MAXSIZE];
   cout<<"请按层序输入结点的值(字符),空格表示空结点,结点数≤"<<MAX_TREE_SIZE<<':'<<endl;
   gets(s); // 输入字符串
   l=strlen(s); // 求字符串的长度
   for(;i<l;i++) // 将字符串赋值给T
   {
     T[i]=s[i];
     if(i!=0&&T[(i+1)/2-1]==Nil&&T[i]!=Nil) // 此结点(不空)无双亲且不是根
     {
       cout<<"出现无双亲的非根结点"<<T[i]<<endl;
       exit(ERROR);
     }
   }
   for(i=l;i<MAX_TREE_SIZE;i++) // 将空赋值给T的后面的结点
     T[i]=Nil;
 #else//不是字符型
   cout<<"请按层序输入结点的值(整型),0表示空结点,输999结束。结点数≤"<<MAX_TREE_SIZE<<':'<<endl;
   while(1)
   {
     cin>>T[i];
     if(T[i]==999)
       break;
     if(i!=0&&T[(i+1)/2-1]==Nil&&T[i]!=Nil) // 此结点(不空)无双亲且不是根
     {
       cout<<"出现无双亲的非根结点"<<T[i]<<endl;
       exit(ERROR);
     }
     i++;
   }
   while(i<MAX_TREE_SIZE)
   {
     T[i]=Nil; // 将空赋值给T的后面的结点
     i++;
   }
 #endif
   return OK;
 }

 #define ClearBiTree InitBiTree // 在顺序存储结构中,两函数完全一样

 Status BiTreeEmpty(SqBiTree T)
 { // 初始条件: 二叉树T存在
   // 操作结果: 若T为空二叉树,则返回TRUE,否则FALSE
   if(T[0]==Nil) // 根结点为空,则树空
     return TRUE;
   else
     return FALSE;
 }

 int BiTreeDepth(SqBiTree T)
 { 
   int i,j=-1;
   for(i=MAX_TREE_SIZE-1;i>=0;i--) // 找到最后一个结点
     if(T[i]!=Nil)
       break;
   i++; 
   do
     j++;
   while(i>=pow(2,j));
   return j;
 }

 Status Root(SqBiTree T,TElemType &e)
 { 
   if(BiTreeEmpty(T)) // T空
     return ERROR;
   else
   {
     e=T[0];
     return OK;
   }
 }

 TElemType Value(SqBiTree T,position e)
 { 
   return T[int(pow(2,e.level-1)+e.order-2)];
 }

 Status Assign(SqBiTree T,position e,TElemType value)
 { 
   int i=int(pow(2,e.level-1)+e.order-2); // 将层、本层序号转为矩阵的序号
   if(value!=Nil&&T[(i+1)/2-1]==Nil) // 给叶子赋非空值但双亲为空
     return ERROR;
   else if(value==Nil&&(T[i*2+1]!=Nil||T[i*2+2]!=Nil)) //  给双亲赋空值但有叶子(不空)
     return ERROR;
   T[i]=value;
   return OK;
 }

 TElemType Parent(SqBiTree T,TElemType e)
 { 
   int i;
   if(T[0]==Nil) // 空树
     return Nil;
   for(i=1;i<=MAX_TREE_SIZE-1;i++)
     if(T[i]==e) // 找到e
       return T[(i+1)/2-1];
   return Nil; // 没找到e
 }

 TElemType LeftChild(SqBiTree T,TElemType e)
 { // 初始条件: 二叉树T存在,e是T中某个结点
   // 操作结果: 返回e的左孩子。若e无左孩子,则返回"空"
   int i;
   if(T[0]==Nil) // 空树
     return Nil;
   for(i=0;i<=MAX_TREE_SIZE-1;i++)
     if(T[i]==e) // 找到e
       return T[i*2+1];
   return Nil; // 没找到e
 }

 TElemType RightChild(SqBiTree T,TElemType e)
 { // 初始条件: 二叉树T存在,e是T中某个结点
   // 操作结果: 返回e的右孩子。若e无右孩子,则返回"空"
   int i;
   if(T[0]==Nil) // 空树
     return Nil;
   for(i=0;i<=MAX_TREE_SIZE-1;i++)
     if(T[i]==e) // 找到e
       return T[i*2+2];
   return Nil; // 没找到e
 }

 TElemType LeftSibling(SqBiTree T,TElemType e)
 { // 初始条件: 二叉树T存在,e是T中某个结点
   // 操作结果: 返回e的左兄弟。若e是T的左孩子或无左兄弟,则返回"空"
   int i;
   if(T[0]==Nil) // 空树
     return Nil;
   for(i=1;i<=MAX_TREE_SIZE-1;i++)
     if(T[i]==e&&i%2==0) // 找到e且其序号为偶数(是右孩子)
       return T[i-1];
   return Nil; // 没找到e
 }

 TElemType RightSibling(SqBiTree T,TElemType e)
 { // 初始条件: 二叉树T存在,e是T中某个结点
   // 操作结果: 返回e的右兄弟。若e是T的右孩子或无右兄弟,则返回"空"
   int i;
   if(T[0]==Nil) // 空树
     return Nil;
   for(i=1;i<=MAX_TREE_SIZE-1;i++)
     if(T[i]==e&&i%2) // 找到e且其序号为奇数(是左孩子)
       return T[i+1];
   return Nil; // 没找到e
 }

 void Move(SqBiTree q,int j,SqBiTree T,int i) // InsertChild()用到。加
 { // 把从q的j结点开始的子树移为从T的i结点开始的子树
   if(q[2*j+1]!=Nil) // q的左子树不空
     Move(q,(2*j+1),T,(2*i+1)); // 把q的j结点的左子树移为T的i结点的左子树
   if(q[2*j+2]!=Nil) // q的右子树不空
     Move(q,(2*j+2),T,(2*i+2)); // 把q的j结点的右子树移为T的i结点的右子树
   T[i]=q[j]; // 把q的j结点移为T的i结点
   q[j]=Nil; // 把q的j结点置空
 }

 Status InsertChild(SqBiTree T,TElemType p,Status LR,SqBiTree c)
 { // 初始条件: 二叉树T存在,p是T中某个结点的值,LR为0或1,非空二叉树c与T
   //           不相交且右子树为空
   // 操作结果: 根据LR为0或1,插入c为T中p结点的左或右子树。p结点的原有左或
   //           右子树则成为c的右子树
   int j,k,i=0;
   for(j=0;j<int(pow(2,BiTreeDepth(T)))-1;j++) // 查找p的序号
     if(T[j]==p) // j为p的序号
       break;
   k=2*j+1+LR; // k为p的左或右孩子的序号
   if(T[k]!=Nil) // p原来的左或右孩子不空
     Move(T,k,T,2*k+2); // 把从T的k结点开始的子树移为从k结点的右子树开始的子树
   Move(c,i,T,k); // 把从c的i结点开始的子树移为从T的k结点开始的子树
   return OK;
 }

 typedef int QElemType; // 设队列元素类型为整型(序号)
 #include "c3-3.h" // 顺序非循环队列
 #include "bo3-4.cpp" // 顺序非循环队列的基本操作
 Status DeleteChild(SqBiTree T,position p,int LR)
 { // 初始条件: 二叉树T存在,p指向T中某个结点,LR为1或0
   // 操作结果: 根据LR为1或0,删除T中p所指结点的左或右子树
   int i;
   Status k=OK; // 队列不空的标志
   SqQueue q;
   InitQueue(q); // 初始化队列,用于存放待删除的结点
   i=(int)pow(2,p.level-1)+p.order-2; // 将层、本层序号转为矩阵的序号
   if(T[i]==Nil) // 此结点空
     return ERROR;
   i=i*2+1+LR; // 待删除子树的根结点在矩阵中的序号
   while(k)
   {
     if(T[2*i+1]!=Nil) // 左结点不空
       EnQueue(q,2*i+1); // 入队左结点的序号
     if(T[2*i+2]!=Nil) // 右结点不空
       EnQueue(q,2*i+2); // 入队右结点的序号
     T[i]=Nil; // 删除此结点
     k=DeQueue(q,i); // 队列不空
   }
   return OK;
 }

 Status(*VisitFunc)(TElemType); // 函数变量
 void PreTraverse(SqBiTree T,int e)
 { // PreOrderTraverse()调用
   VisitFunc(T[e]);
   if(T[2*e+1]!=Nil) // 左子树不空
     PreTraverse(T,2*e+1);
   if(T[2*e+2]!=Nil) // 右子树不空
     PreTraverse(T,2*e+2);
 }

 Status PreOrderTraverse(SqBiTree T,Status(*Visit)(TElemType))
 { // 初始条件: 二叉树存在,Visit是对结点操作的应用函数
   // 操作结果: 先序遍历T,对每个结点调用函数Visit一次且仅一次。
   //           一旦Visit()失败,则操作失败
   VisitFunc=Visit;
   if(!BiTreeEmpty(T)) // 树不空
     PreTraverse(T,0);
   cout<<endl;
   return OK;
 }

 void InTraverse(SqBiTree T,int e)
 { // InOrderTraverse()调用
   if(T[2*e+1]!=Nil) // 左子树不空
     InTraverse(T,2*e+1);
   VisitFunc(T[e]);
   if(T[2*e+2]!=Nil) // 右子树不空
     InTraverse(T,2*e+2);
 }

 Status InOrderTraverse(SqBiTree T,Status(*Visit)(TElemType))
 { // 初始条件: 二叉树存在,Visit是对结点操作的应用函数
   // 操作结果: 中序遍历T,对每个结点调用函数Visit一次且仅一次。
   //           一旦Visit()失败,则操作失败
   VisitFunc=Visit;
   if(!BiTreeEmpty(T)) // 树不空
     InTraverse(T,0);
   cout<<endl;
   return OK;
 }

 void PostTraverse(SqBiTree T,int e)
 { // PostOrderTraverse()调用
   if(T[2*e+1]!=Nil) // 左子树不空
     PostTraverse(T,2*e+1);
   if(T[2*e+2]!=Nil) // 右子树不空
     PostTraverse(T,2*e+2);
   VisitFunc(T[e]);
 }

 Status PostOrderTraverse(SqBiTree T,Status(*Visit)(TElemType))
 { // 初始条件: 二叉树T存在,Visit是对结点操作的应用函数
   // 操作结果: 后序遍历T,对每个结点调用函数Visit一次且仅一次。
   //           一旦Visit()失败,则操作失败
   VisitFunc=Visit;
   if(!BiTreeEmpty(T)) // 树不空
     PostTraverse(T,0);
   cout<<endl;
   return OK;
 }

 void LevelOrderTraverse(SqBiTree T,Status(*Visit)(TElemType))
 { // 层序遍历二叉树
   int i=MAX_TREE_SIZE-1,j;
   while(T[i]==Nil)
     i--; // 找到最后一个非空结点的序号
   for(j=0;j<=i;j++)  // 从根结点起,按层序遍历二叉树
     if(T[j]!=Nil)
       Visit(T[j]); // 只遍历非空的结点
   cout<<endl;
 }

 void Print(SqBiTree T)
 { // 逐层、按本层序号输出二叉树
   int j,k;
   position p;
   TElemType e;
   for(j=1;j<=BiTreeDepth(T);j++)
   {
     cout<<"第"<<j<<"层: ";
     for(k=1;k<=pow(2,j-1);k++)
     {
       p.level=j;
       p.order=k;
       e=Value(T,p);
       if(e!=Nil)
         cout<<k<<':'<<e<<' ';
     }
     cout<<endl;
   }
 }

{ int i; for(i=0;i<MAXSIZE;i++) T[i]=Nil; // 初值为空 return ok;

}
今天寄到这里吧,明天继续复习,嗯加油!jade , come on !!!













            
版权声明:本文为博主原创文章,未经博主允许不得转载。

相关文章推荐

数据结构笔记整理第5章:树和二叉树

第5章 树和二叉树本章内容本章主要介绍树、二叉树的概念,遍历方法以及应用等,本章在考研中是重点内容。

二叉树的实现-Huffman树-摘自数据结构实现java版本(个人笔记整理)

//树节点的实现 package tree; import java.util.Iterator; import java.util.LinkedList; import java.util.St...

数据结构(C++版)笔记整理——第二章

第2章线性表 线性表是线性结构的典型代表。线性表是一种最基本、最简单的数据结构,数据元素之间仅具有单一的前驱和后继关系。 2.1 线性表的逻辑结构 2.1.1 线性表的定义 ★线性表:简称表,...

sk_buff 整理笔记(一、数据结构)

对sk_buff结构体以及相关的sk_buff_head结构体、sk_buff结构体数据区、sk_shared_info分片结构体、分片结构体的数据区的常用成员字段进行透彻的分析。以及分析这几个结构体...

【算法】数据结构与算法分析学习笔记——各类二叉查找树的吐血整理

二叉查找树的吐血整理

栈的使用-迷宫算法实现代码-摘自数据结构实现java版本(个人笔记整理)

//首先cell类 package list; public class Cell { private int x;//坐标x private int y;//左边y private...

数据结构笔记整理第7章:排序

第7章 排序本章内容本章主要介绍多种内部排序算法,包括它们的排序过程、排序时间复杂度以及实现等等,本章在考研中是重点内容。本章几个内部排序的代码实现都比较重要。

数据结构笔记整理第1章:绪论

第1章 绪论本章内容本章主要介绍课程的框架、会使用到的C,C++的基本语法以及空间、时间复杂度的计算方法。

数据结构笔记整理第3章:栈和队列

第3章 栈和队列本章内容本章主要介绍栈和队列的基本概念,存储结构、特点、相应算法以及经典应用。
内容举报
返回顶部
收藏助手
不良信息举报
您举报文章:深度学习:神经网络中的前向传播和反向传播算法推导
举报原因:
原因补充:

(最多只允许输入30个字)