收藏!斯坦福Andrew Ng教授“机器学习”26篇教程全译

转载 2014年07月26日 09:50:52
摘要:机器学习与数据挖掘!重中之重,热中之热。要“深入浅出,要言不烦,不卖关子,不摆噱头”讲清楚机器学习,斯坦福大学教授Andrew Ng做到了。这是他的26篇教程的翻译,建议收藏。

机器学习与数据挖掘!重中之重,热中之热。每一篇在CSDN云计算频道发表的相关文章都获得无数响应与评价。我们一直在思考如何能将文章汇聚成系列,并建立了“机器学习”的tag(http://www.csdn.net/tag/%E6%9C%BA%E5%99%A8%E5%AD%A6%E4%B9%A0/news),但要从浅入深,汇聚前沿,点评发展,并将云计算与大数据领域最具价值的部分体现出来,很难。幸好业内有专家走在了最前面。美国卡内基梅隆计算机机器人专业博士、面向移动云计算创业人邓侃博士(@邓侃)在2月20日看到了斯坦福大学教授Andrew Ng的网页(http://deeplearning.stanford.edu/wiki/index.php/UFLDL_Tutorial%E3%80%82):

越看越喜欢。Andrew Ng 教授写的教程,深入浅出,要言不烦,不卖关子,不摆噱头,这是真心想让读者看得懂的做法。与其重新造轮子,不如锦上添花,敬重、继承、并发扬光大别人的已有成果。在新浪微博上发帖征集Andrew Ng教授文章26篇教程的翻译志愿者。历经经过50天的团结奋战,今天已经取得全面彻底的胜利。

目录如下:

稀疏自编码器

神经网络

反向传导算法

梯度检验与高级优化

自编码算法与稀疏性

可视化自编码器训练结果

稀疏自编码器符号一览表

练习:稀疏自编码

矢量化编程实现

矢量化编程

逻辑回归的向量化实现样例

神经网络向量化

练习:矢量

预处理:主成分分析与白化

主成分分析

白化

实现主成分分析和白化

练习:在2D PCA

练习:PCA和美白

SOFTMAX回归

SOFTMAX回归

练习:SOFTMAX回归

自我学习与无监督特征学习

自我学习

练习:自学成才的学习

建立分类用深度网络

从自我学习到深层网络

深度网络概览

栈式自编码算法

微调多层自编码算法

练习:实现深网络位数分类

自编码线性解码器

线性解码器

练习:学习与稀疏Autoencoders的颜色特征

处理大型图像

卷积特征提取

池化

练习:卷积和池

注意:

混杂的

MATLAB模块

风格指南

有用的链接

混杂的主题

数据预处理

用反向传导思想求导

进阶主题:

稀疏编码

稀疏编码

稀疏编码自编码表达

练习:稀疏编码

独立成分分析样式建模

独立成分分析

练习:独立分量分析

其它

卷积培训

受限玻尔兹曼机

深信念网络

去噪Autoencoders的

K-均值

多尺度空间金字塔/

慢特征分析

瓷砖卷积网络

原文链接:斯坦福大学教授Andrew Ng

翻译链接:斯坦福Andrew Ng教授“机器学习”26篇教程全译

http://deeplearning.stanford.edu/wiki/index.php/UFLDL%E6%95%99%E7%A8%8B

斯坦福NG机器学习听课笔记-推荐系统(recommender system)

斯坦福NG机器学习听课笔记-推荐系统(recommender system),NG从电影评级简单例子开始讲,把推荐系统中概念与核心算法(协同过滤)都有清晰的描述。...
  • huruzun
  • huruzun
  • 2014年12月29日 10:10
  • 4313

斯坦福NG机器学习:K-means笔记

斯坦福NG机器学习:K-means笔记 ,无监督学习:经典聚类算法
  • huruzun
  • huruzun
  • 2014年12月25日 23:30
  • 3410

斯坦福:机器学习 Andrew NG超详细笔记(中英文都有)

  • 2014年07月06日 09:19
  • 11.23MB
  • 下载

斯坦福大学Andrew Ng教授主讲的《机器学习》公开课观后感

近日,在网易公开课视频网站上看完了《机器学习》课程视频,现做个学后感,也叫观后感吧。  学习时间 从2013年7月26日星期五开始,在网易公开课视频网站上,观看由斯坦福大学Andrew ...
  • lotus___
  • lotus___
  • 2014年03月03日 09:15
  • 63121

斯坦福大学Andrew Ng机器学习个人笔记完整版

  • 2016年07月21日 09:35
  • 11.3MB
  • 下载

《机器学习》(Machine Learning)——Andrew Ng 斯坦福大学公开课学习笔记(二)

第3集  欠拟合和过拟合的概念 一、线性回归的解释 ,最后一项表示误差项(独立同分布),对前面未被建模的因素进行考虑,一般误差项的加和,根据中心极限定理,符合高斯分布 推出:...
  • u013896242
  • u013896242
  • 2015年08月06日 21:02
  • 1300

《机器学习》(Machine Learning)——Andrew Ng 斯坦福大学公开课学习笔记(三)

第5集 生成学习算法 (一)生成学习模型: 例如:恶性和良性癌症的问题,分别对样本中恶性癌症和良性癌症的特征分别建模,当有新的样本需要判定时,看它是和哪个模型更像,进而预测该样本是良性还是恶性 ...
  • u013896242
  • u013896242
  • 2015年08月08日 21:58
  • 1804

Coursera上的Andrew Ng《机器学习》学习笔记Week1

Coursera上的Andrew Ng《机器学习》学习笔记Week1 作者:雨水/家辉,日期:2017-01-17,CSDN博客:http://blog.csdn.net/gobitan 注:本课...
  • gobitan
  • gobitan
  • 2017年01月17日 17:27
  • 679

Andrew Ng coursera上的《机器学习》ex2

Andrew Ng coursera上的《机器学习》ex2按照课程所给的ex2的文档要求,ex2要求完成以下几个计算过程的代码编写: exerciseName description plo...
  • LilyNothing
  • LilyNothing
  • 2016年08月22日 11:16
  • 1072

监督学习之生成学习算法——Andrew Ng机器学习笔记(四)

内容提要这篇博客的主要讲生成学习算法,主要包括两个算法: - 高斯判别分析(Gaussian Discriminant Analysis) - 朴素贝叶斯(Naive Bayes)now let’...
  • A_cainiao_A
  • A_cainiao_A
  • 2015年12月25日 22:35
  • 2269
内容举报
返回顶部
收藏助手
不良信息举报
您举报文章:收藏!斯坦福Andrew Ng教授“机器学习”26篇教程全译
举报原因:
原因补充:

(最多只允许输入30个字)