hdu 2844 Coins

本文介绍了一种使用动态规划解决硬币组合问题的方法,旨在找出1到m价值间可组成的最大种类数。通过完全背包与01背包的思想,对不同面额及数量的硬币进行最优组合。

题目:

    链接:点击打开链接

题意:

    有n个硬币,知道其价值A1。。。。。An。数量C1。。。Cn。问在1到m价值之间,最多能组成多少种价值。

思路:

    dp[i]表示i价值能够组成的最大种数。

代码:

#include<iostream>
#include<cstdio>
#include<cstring>
using namespace std;

int n,m;
int a[110],c[110];
int dp[100010];

int main()
{
    int cnt,k,num;
    while(scanf("%d%d",&n,&m) != EOF && (n || m))
    {
        cnt = 0;
        memset(dp,0,sizeof(dp));
        for(int i=1; i<=n; i++)
            cin>>a[i];
        for(int i=1; i<=n; i++)
            cin>>c[i];
        for(int i=1; i<=n; i++)
        {
            if(a[i]*c[i] > m)//完全背包
            {
                for(int j=a[i]; j<=m; j++)
                    dp[j] = max(dp[j],dp[j-a[i]]+a[i]);
            }
            else
            {
                k = 1;
                while(k<c[i])//将第i种物品分成若干件物品,其中每件物品有一个系数,这件物品的费用和价值均是原来的费用和价值乘以这个系数。使这些系数分别为 1,2,4,...,2^(k-1),n[i]-2^k+1,且k是满足n[i]-2^k+1>0的最大整数。
                {
                    for(int j=m; j>=k*a[i]; j--)
                        dp[j] = max(dp[j],dp[j-k*a[i]]+k*a[i]);//拆分第i个物品,其实是把2^k个物品组合为一个物品来操作  
                    c[i] -= k;
                    k <<= 1;
                }
                for(int j = m; j>=c[i]*a[i]; j--)//01背包
                    dp[j]=max( dp[j],dp[j-c[i]*a[i]]+c[i]*a[i] );
            }
        }
        for(int i=1;i<=m;i++) 
            if( dp[i]==i ) 
                cnt++;
        printf("%d\n",cnt);
    }
    return 0;
}


评论
成就一亿技术人!
拼手气红包6.0元
还能输入1000个字符
 
红包 添加红包
表情包 插入表情
 条评论被折叠 查看
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值