jdk1.8 hashmap

原创 2015年11月21日 10:47:41

本文来源于:http://www.2cto.com/kf/201505/401433.html

这几天学习了HashMap的底层实现,发现关于HashMap实现的博客还是很多的,但几乎都是JDK1.6版本的,而我的JDK版本是1.8.0_25,对比之下,发现Hashmap的实现变动较大。这篇博客断断续续写了一天,理解不当之处,欢迎指正。

在JDK1.6中,HashMap采用位桶+链表实现,即使用链表处理冲突,同一hash值的链表都存储在一个链表里。但是当位于一个桶中的元素较多,即hash值相等的元素较多时,通过key值依次查找的效率较低。而JDK1.8中,HashMap采用位桶+链表+红黑树实现,当链表长度超过阈值(8)时,将链表转换为红黑树,这样大大减少了查找时间。

下面直接贴代码:

1 涉及到的数据结构:处理hash冲突的链表和红黑树以及位桶

 

?
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
//Node是单向链表,它实现了Map.Entry接口
static class Node<k,v> implements Map.Entry<k,v> {
    final int hash;
    final K key;
    V value;
    Node<k,v> next;
    //构造函数Hash值 键 值 下一个节点
    Node(int hash, K key, V value, Node<k,v> next) {
        this.hash = hash;
        this.key = key;
        this.value = value;
        this.next = next;
    }
 
    public final K getKey()        { return key; }
    public final V getValue()      { return value; }
    public final String toString() { return key + = + value; }
 
    public final int hashCode() {
        return Objects.hashCode(key) ^ Objects.hashCode(value);
    }
 
    public final V setValue(V newValue) {
        V oldValue = value;
        value = newValue;
        return oldValue;
    }
    //判断两个node是否相等,若key和value都相等,返回true。可以与自身比较为true
    public final boolean equals(Object o) {
        if (o == this)
            return true;
        if (o instanceof Map.Entry) {
            Map.Entry<!--?,?--> e = (Map.Entry<!--?,?-->)o;
            if (Objects.equals(key, e.getKey()) &&
                Objects.equals(value, e.getValue()))
                return true;
        }
        return false;
    }
}</k,v></k,v></k,v></k,v>

?
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
//红黑树
static final class TreeNode<k,v> extends LinkedHashMap.Entry<k,v> {
    TreeNode<k,v> parent;  // 父节点
    TreeNode<k,v> left; //左子树
    TreeNode<k,v> right;//右子树
    TreeNode<k,v> prev;    // needed to unlink next upon deletion
    boolean red;    //颜色属性
    TreeNode(int hash, K key, V val, Node<k,v> next) {
        super(hash, key, val, next);
    }
 
    //返回当前节点的根节点
    final TreeNode<k,v> root() {
        for (TreeNode<k,v> r = this, p;;) {
            if ((p = r.parent) == null)
                return r;
            r = p;
        }
    }</k,v></k,v></k,v></k,v></k,v></k,v></k,v></k,v></k,v>

?
1
transient Node<k,v>[] table;//存储(位桶)的数组</k,v>

有了以上3个数据结构,只要有一点数据结构基础的人,都可以大致联想到HashMap的实现了。首先有一个每个元素都是链表(可能表述不准确)的数组,当添加一个元素(key-value)时,就首先计算元素key的hash值,以此确定插入数组中的位置,但是可能存在同一hash值的元素已经被放在数组同一位置了,这时就添加到同一hash值的元素的后面,他们在数组的同一位置,但是形成了链表,所以说数组存放的是链表。而当链表长度太长时,链表就转换为红黑树,这样大大提高了查找的效率。

 

下面继续看代码实现:

2 HashMap主要属性

说一下填充比,默认值为0.75,如果实际元素所占容量占分配容量的75%时就要扩容了。如果填充比很大,说明利用的空间很多,但是查找的效率很低,因为链表的长度很大(当然最新版本使用了红黑树后会改进很多),HashMap本来是以空间换时间,所以填充比没必要太大。但是填充比太小又会导致空间浪费。如果关注内存,填充比可以

稍大,如果主要关注查找性能,填充比可以稍小。

 

?
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
public class HashMap<k,v> extends AbstractMap<k,v> implements Map<k,v>, Cloneable, Serializable {
 
    private static final long serialVersionUID = 362498820763181265L;
 
    static final int DEFAULT_INITIAL_CAPACITY = 1 << 4; // aka 16
 
    static final int MAXIMUM_CAPACITY = 1 << 30;//最大容量
 
    static final float DEFAULT_LOAD_FACTOR = 0.75f;//填充比
 
    //当add一个元素到某个位桶,其链表长度达到8时将链表转换为红黑树
    static final int TREEIFY_THRESHOLD = 8;
 
 
    static final int UNTREEIFY_THRESHOLD = 6;
 
 
    static final int MIN_TREEIFY_CAPACITY = 64;
 
    transient Node<k,v>[] table;//存储元素的数组
 
 
    transient Set<map.entry<k,v>> entrySet;
 
    transient int size;//存放元素的个数
 
    transient int modCount;//被修改的次数fast-fail机制
 
    int threshold;//临界值 当实际大小(容量*填充比)超过临界值时,会进行扩容
 
    final float loadFactor;//填充比(......后面略)</map.entry<k,v></k,v></k,v></k,v></k,v>

3 构造方法

 

HashMap的构造方法有4种,主要涉及到的参数有,指定初始容量,指定填充比和用来初始化的Map,直接看代码

 

?
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
/* ---------------- Public operations -------------- */
 
//构造函数1
public HashMap(int initialCapacity, float loadFactor) {
    //指定的初始容量非负
    if (initialCapacity < 0)
        throw new IllegalArgumentException(Illegal initial capacity:  +
                                           initialCapacity);
    //如果指定的初始容量大于最大容量,置为最大容量
    if (initialCapacity > MAXIMUM_CAPACITY)
        initialCapacity = MAXIMUM_CAPACITY;
    //填充比为正
    if (loadFactor <= 0 || Float.isNaN(loadFactor))
        throw new IllegalArgumentException(Illegal load factor:  +
                                           loadFactor);
    this.loadFactor = loadFactor;
    this.threshold = tableSizeFor(initialCapacity);//新的扩容临界值
}
 
//构造函数2
public HashMap(int initialCapacity) {
    this(initialCapacity, DEFAULT_LOAD_FACTOR);
}
 
//构造函数3
public HashMap() {
    this.loadFactor = DEFAULT_LOAD_FACTOR; // all other fields defaulted
}
 
//构造函数4用m的元素初始化散列映射
public HashMap(Map<!--? extends K, ? extends V--> m) {
    this.loadFactor = DEFAULT_LOAD_FACTOR;
    putMapEntries(m, false);
}

4 扩容机制

 

构造hash表时,如果不指明初始大小,默认大小为16(即Node数组大小16),如果Node[]数组中的元素达到(填充比*Node.length)

 

?
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
//可用来初始化HashMap大小 或重新调整HashMap大小 变为原来2倍大小
   final Node<k,v>[] resize() {
       Node<k,v>[] oldTab = table;
       int oldCap = (oldTab == null) ? 0 : oldTab.length;
       int oldThr = threshold;
       int newCap, newThr = 0;
       if (oldCap > 0) {
           if (oldCap >= MAXIMUM_CAPACITY) {//超过1>>30大小,无法扩容只能改变 阈值
               threshold = Integer.MAX_VALUE;
               return oldTab;
           }
           else if ((newCap = oldCap << 1) < MAXIMUM_CAPACITY &&
                    oldCap >= DEFAULT_INITIAL_CAPACITY)//新的容量为旧的2倍 最小也是16
               newThr = oldThr << 1; // 扩容阈值加倍
       }
       else if (oldThr > 0)
           newCap = oldThr;//oldCap=0 ,oldThr>0此时newThr=0
       else {               //oldCap=0,oldThr=0 相当于使用默认填充比和初始容量 初始化
           newCap = DEFAULT_INITIAL_CAPACITY;
           newThr = (int)(DEFAULT_LOAD_FACTOR * DEFAULT_INITIAL_CAPACITY);
       }
        
       if (newThr == 0) {
           float ft = (float)newCap * loadFactor;
           newThr = (newCap < MAXIMUM_CAPACITY && ft < (float)MAXIMUM_CAPACITY ?
                     (int)ft : Integer.MAX_VALUE);
       }
       threshold = newThr;
       @SuppressWarnings({rawtypes,unchecked})
           Node<k,v>[] newTab = (Node<k,v>[])new Node[newCap];
       //数组辅助到新的数组中,分红黑树和链表讨论
       table = newTab;
       if (oldTab != null) {
           for (int j = 0; j < oldCap; ++j) {
               Node<k,v> e;
               if ((e = oldTab[j]) != null) {
                   oldTab[j] = null;
                   if (e.next == null)
                       newTab[e.hash & (newCap - 1)] = e;
                   else if (e instanceof TreeNode)
                       ((TreeNode<k,v>)e).split(this, newTab, j, oldCap);
                   else { // preserve order
                       Node<k,v> loHead = null, loTail = null;
                       Node<k,v> hiHead = null, hiTail = null;
                       Node<k,v> next;
                       do {
                           next = e.next;
                           if ((e.hash & oldCap) == 0) {
                               if (loTail == null)
                                   loHead = e;
                               else
                                   loTail.next = e;
                               loTail = e;
                           }
                           else {
                               if (hiTail == null)
                                   hiHead = e;
                               else
                                   hiTail.next = e;
                               hiTail = e;
                           }
                       } while ((e = next) != null);
                       if (loTail != null) {
                           loTail.next = null;
                           newTab[j] = loHead;
                       }
                       if (hiTail != null) {
                           hiTail.next = null;
                           newTab[j + oldCap] = hiHead;
                       }
                   }
               }
           }
       }
       return newTab;
   }</k,v></k,v></k,v></k,v></k,v></k,v></k,v></k,v></k,v>

很明显,因为存在旧数组元素复制到新数组中的操作,扩容非常耗时。

 

5 确定元素put/get的数组Node[]位置

 

?
1
2
3
4
static final int hash(Object key) {
    int h;
    return (key == null) ? 0 : (h = key.hashCode()) ^ (h >>> 16);
}
?
1
public native int hashCode();

首先由key值通过hash(key)获取hash值h,再通过 h&(length-1)得到所在数组位置。一般对于哈希表的散列常用的方法有直接定址法,除留余数法等,既要便于计算,又能减少冲突。

 

在Hashtable中就是通过除留余数法散列分布的,具体如下:

?
1
int index = (hash & 0x7FFFFFFF) % tab.length;
但是取模中的除法运算效率很低,HashMap则通过h&(length-1)替代取模,得到所在数组位置,这样效率会高很多。

在HashMap实现中还可以看到如下代码取代了以前版本JDK1.6的while循环来保证哈希表的容量一直是2的整数倍数,用移位操作取代了循环移位。

 

 

?
1
2
3
4
5
6
7
8
9
10
//这段代码保证HashMap的容量总是2的n次方
static final int tableSizeFor(int cap) {
    int n = cap - 1;
    n |= n >>> 1;
    n |= n >>> 2;
    n |= n >>> 4;
    n |= n >>> 8;
    n |= n >>> 16;
    return (n < 0) ? 1 : (n >= MAXIMUM_CAPACITY) ? MAXIMUM_CAPACITY : n + 1;
}
可以从源码看出,在HashMap的构造函数中,都直接或间接的调用了tableSizeFor函数。下面分析原因:length为2的整数幂保证了length-1最后一位(当然是二进制表示)为1,从而保证了取索引操作 h&(length-1)的最后一位同时有为0和为1的可能性,保证了散列的均匀性。反过来讲,当length为奇数时,length-1最后一位为0,这样与h按位与

 

的最后一位肯定为0,即索引位置肯定是偶数,这样数组的奇数位置全部没有放置元素,浪费了大量空间。

简而言之:length为2的幂保证了按位与最后一位的有效性,使哈希表散列更均匀。
 

6 下面分析HashMap的最常用操作put和get

注意HashMap中key和value都容许为null

直接上代码:

 

?
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
//***********************************get***************************************************/
public V get(Object key) {
    Node<k,v> e;
    return (e = getNode(hash(key), key)) == null ? null : e.value;
}
 
 
final Node<k,v> getNode(int hash, Object key) {
    Node<k,v>[] tab; Node<k,v> first, e; int n; K k;
    //hash & (length-1)得到对象的保存位
    if ((tab = table) != null && (n = tab.length) > 0 &&
        (first = tab[(n - 1) & hash]) != null) {
        if (first.hash == hash && // always check first node
            ((k = first.key) == key || (key != null && key.equals(k))))
            return first;
        if ((e = first.next) != null) {
            //如果第一个节点是TreeNode,说明采用的是数组+红黑树结构处理冲突
            //遍历红黑树,得到节点值
            if (first instanceof TreeNode)
                return ((TreeNode<k,v>)first).getTreeNode(hash, key);
            //链表结构处理
            do {
                if (e.hash == hash &&
                    ((k = e.key) == key || (key != null && key.equals(k))))
                    return e;
            } while ((e = e.next) != null);
        }
    }
    return null;
}</k,v></k,v></k,v></k,v></k,v>

?
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
//************************put*********************************************************************
   public V put(K key, V value) {
       return putVal(hash(key), key, value, false, true);
   }
 
   final V putVal(int hash, K key, V value, boolean onlyIfAbsent,
                  boolean evict) {
       Node<k,v>[] tab; Node<k,v> p; int n, i;
       //如果tab为空或长度为0,则分配内存resize()
       if ((tab = table) == null || (n = tab.length) == 0)
           n = (tab = resize()).length;
       //(n - 1) & hash找到put位置,如果为空,则直接put
       if ((p = tab[i = (n - 1) & hash]) == null)
           tab[i] = newNode(hash, key, value, null);
       else {
           Node<k,v> e; K k;
           //第一节节点hash值同,且key值与插入key相同
           if (p.hash == hash &&((k = p.key) == key || (key != null && key.equals(k))))
               e = p;
           else if (p instanceof TreeNode)//属于红黑树处理冲突
               e = ((TreeNode<k,v>)p).putTreeVal(this, tab, hash, key, value);
           else {
               //链表处理冲突
               for (int binCount = 0; ; ++binCount) {
                   //p第一次指向表头,以后依次后移
                   if ((e = p.next) == null) {
                       //e为空,表示已到表尾也没有找到key值相同节点,则新建节点
                       p.next = newNode(hash, key, value, null);
                       //新增节点后如果节点个数到达阈值,则将链表转换为红黑树
                       if (binCount >= TREEIFY_THRESHOLD - 1) // -1 for 1st
                           treeifyBin(tab, hash);
                       break;
                   }
                   //容许null==null
                   if (e.hash == hash &&((k = e.key) == key || (key != null && key.equals(k))))
                       break;
                   p = e;//更新p指向下一个节点
               }
           }
           //更新hash值和key值均相同的节点Value值
           if (e != null) { // existing mapping for key
               V oldValue = e.value;
               if (!onlyIfAbsent || oldValue == null)
                   e.value = value;
               afterNodeAccess(e);
               return oldValue;
           }
       }
       ++modCount;
       if (++size > threshold)
           resize();
       afterNodeInsertion(evict);
       return null;
   }</k,v></k,v></k,v></k,v>

下面简单说下添加键值对put(key,value)的过程:(事实上,直接看代码逻辑更清晰些)

 

1判断键值对数组tab[]是否为空或为null,否则resize();

2根据键值key计算hash值得到插入的数组索引i,如果tab[i]==null,直接新建节点添加,否则转入3

3判断当前数组中处理hash冲突的方式为链表还是红黑树(check第一个节点类型即可),分别处理。


HashMap源码分析(jdk1.8)

HashMap源码前前后后看了好几次,也和同事分享过好几次,每次都有新的收获。 分享也是一种提高! 本文首写于个人云笔记(点击访问),经多次修改,短期内不会有重大修改了,现发于此,有任何问题欢迎交流指...

Java 集合深入理解(17):HashMap 在 JDK 1.8 后新增的红黑树结构

点击查看 Java 集合框架深入理解 系列, - ( ゜- ゜)つロ 乾杯~ 上篇文章我们介绍了 HashMap 的主要特点和关键方法源码解读,这篇文章我们介绍 HashMap 在 JDK1.8...

Java Jdk1.8 HashMap源码阅读笔记二

三、源码阅读3、元素包含containsKey(Object key) /** * Returns true if this map contains a mapping for the ...

HashMap源码分析——JDK1.8

JDK1.8的HashMap部分源码分析

HashMap 在 JDK 1.8 后新增的红黑树结构

读完本文你将了解到: 点击查看 Java 集合框架深入理解 系列 - - 乾杯传统 HashMap 的缺点HashMap 在 JDK 18 中新增的数据结构 红黑树Has...

Java Jdk1.8 HashMap源码阅读笔记一

最近在工作用到Map等一系列的集合,于是,想仔细看一下其具体实现。一、结构public class HashMap extends AbstractMap implements Map, Cl...

Java面试绕不开的问题: Java中HashMap底层实现原理(JDK1.8)源码分析

Java面试绕不开的问题: Java中HashMap底层实现原理(JDK1.8)源码分析

HashMap源码分析(JDK1.8)- 你该知道的都在这里了

为什么获取下标时用按位与&,而不是取模%? 不只是&速度更快哦, 如果不清楚请耐心看完本博文...

JDK1.8源码逐字逐句带你理解HashMap底层(2)

引言:很开心,大家继续来看HashMap底层的第二段。昨天(上一篇博文)我们主要是介绍了HashMap类的一些重要的成员变量并简述了他们的名称作用,附带图文解释了他们之间存在的关系,又深入学习了Has...

JDK1.8HashMap源码的简单剖析(1)

HashMap源码的剖析 最近大家都在找实习,而对于Java方向的同学,面试最常问的也是Java集合中的Map,Map有那几种,每种的简单实现都是什么,每种的使用场景都是什么。 昨天去面试,结果被问到...
内容举报
返回顶部
收藏助手
不良信息举报
您举报文章:jdk1.8 hashmap
举报原因:
原因补充:

(最多只允许输入30个字)