算法时间复杂度计算方法

原创 2016年05月30日 15:09:41

一、概念:
时间复杂度是总运算次数表达式中受n的变化影响最大的那一项(不含系数)
比如:一般总运算次数表达式类似于这样:
a*2^n+b*n^3+c*n^2+d*n*lg(n)+e*n+f
a ! =0时,时间复杂度就是O(2^n);
a=0,b<>0 =>O(n^3);
a,b=0,c<>0 =>O(n^2)依此类推
实例:

for(i=1;i<=n;i++) {//循环了n*n次,当然是O(n^2)
    for(j=1;j<=n;j++) {
        s++;
    }
}   
for(i=1;i<=n;i++) {//循环了(n+n-1+n-2+...+1)≈(n^2)/2,因为时间复杂度是不考虑系数的,所以也是O(n^2)
    for(j=i;j<=n;j++) {
        s++;
    }
}   
for(i=1;i<=n;i++) {//循环了(1+2+3+...+n)≈(n^2)/2,当然也是O(n^2)
    for(j=1;j<=i;j++) {
        s++;
    }
}
i=1;k=0;
while(i<=n-1){ //循环了n-1≈n次,所以是O(n)
    k+=10*i;
    i++;
}
for(i=1;i<=n;i++) { //循环了(1^2+2^2+3^2+...+n^2)=n(n+1)(2n+1)/6(这个公式要记住哦)≈(n^3)/3,不考虑系数,自然是O(n^3)
    for(j=1;j<=i;j++) {
        for(k=1;k<=j;k++) {
            x=x+1;
        }
    }
}
i=1;  
while (i<=n) {
    i=i*2;
}
/*解:语句1的频度是1,  
    设语句2的频度是t,  则:nt<=n;  t<=log2n
    考虑最坏情况,取最大值t=log2n,
    T(n) = 1 + log2n
    f(n) = log2n
    lim(T(n)/f(n)) = 1/log2n + 1 = 1
    T(n) = O(log2n)*/

另外,在时间复杂度中,log(2,n)(以2为底)与lg(n)(以10为底)是等价的,因为对数换底公式:
log(a,b)=log(c,b)/log(c,a)
所以,log(2,n)=log(2,10)*lg(n),忽略掉系数,二者当然是等价的

二、计算方法:
求解算法的时间复杂度的具体步骤是:
  ⑴ 找出算法中的基本语句;
  算法中执行次数最多的那条语句就是基本语句,通常是最内层循环的循环体。
  ⑵ 计算基本语句的执行次数的数量级;
  只需计算基本语句执行次数的数量级,这就意味着只要保证基本语句执行次数的函数中的最高次幂正确即可,可以忽略所有低次幂和最高次幂的系数。这样能够简化算法分析,并且使注意力集中在最重要的一点上:增长率。
  ⑶ 用大Ο记号表示算法的时间性能。
  将基本语句执行次数的数量级放入大Ο记号中。
  如果算法中包含嵌套的循环,则基本语句通常是最内层的循环体,如果算法中包含并列的循环,则将并列循环的时间复杂度相加。例如:
  for (i=1; i<=n; i++)
  x++;
  for (i=1; i<=n; i++)
  for (j=1; j<=n; j++)
  x++;
  第一个for循环的时间复杂度为Ο(n),第二个for循环的时间复杂度为Ο(n^2),则整个算法的时间复杂度为Ο(n+n^2)=Ο(n^2)。
常见的时间复杂度:
常见的算法时间复杂度由小到大依次为:
  Ο(1)<Ο(log2n)<Ο(n)<Ο(nlog2n)<Ο(n^2)<Ο(n^3)<…<Ο(2^n)<Ο(n!)

其中,
1.Ο(1)表示基本语句的执行次数是一个常数,一般来说,只要算法中不存在循环语句,其时间复杂度就是Ο(1)。
2.O(n),O(n^2), 立方阶O(n^3),…, k次方阶O(n^k) 为多项式阶时间复杂度,分别称为一阶时间复杂度,二阶时间复杂度。。。。
3.O(2^n),指数阶时间复杂度,该种不实用
4.对数阶O(log2n), 线性对数阶O(nlog2n),除了常数阶以外,该种效率最高
例:算法:

for(i=1;i<=n;++i)
  {
     for(j=1;j<=n;++j)
     {
         c[ i ][ j ]=0; //该步骤属于基本操作 执行次数:n^2
          for(k=1;k<=n;++k)
               c[ i ][ j ]+=a[ i ][ k ]*b[ k ][ j ]; //该步骤属于基本操作 执行次数:n^3
     }
  }

则有 T(n)= n^2+n^3,根据上面括号里的同数量级,我们可以确定 n^3为T(n)的同数量级
则有f(n)= n^3,然后根据T(n)/f(n)求极限可得到常数c
则该算法的 时间复杂度:T(n)=O(n^3)

版权声明:

相关文章推荐

如何计算时间复杂度

一、概念 时间复杂度是总运算次数表达式中受n的变化影响最大的那一项(不含系数) 比如:一般总运算次数表达式类似于这样: a*2^n+b*n^3+c*n^2+d*n*lg(n)+e*n+f a ! =...

程序员的八重境界

看到一篇有趣的文章The Eight Levels of Programmers。以前似乎看过不少这种程序员的多少个级别、境界,但这篇语言很风趣,而且分类比较细化,让人觉得挺合情合理、无法反驳的。绝大...
  • dc_726
  • dc_726
  • 2017-08-31 04:58
  • 25574

Drools学习笔记1-规则引擎介绍

最近做一个项目可能会用到规则引擎。就学习了一下。寄了些笔记。从最开始的一无所知,到慢慢熟悉,在这里记录一下啊。 规则引擎的概念:规则引擎起源于基于规则的专家系统,而基于规则的专家系统又是专家系统的其中...

如何计算时间复杂度

求解算法的时间复杂度的具体步骤是:   ⑴ 找出算法中的基本语句;   算法中执行次数最多的那条语句就是基本语句,通常是最内层循环的循环体。   ⑵ 计算基本语句的执行次数的数量级;   只需...

mtk调试

1. VC6.02. SSCOM32 (端口工具)#if defined(__MTK_TARGET__) #define HC_DRV_DEBUG#endifDebugInfo_Print("show...

JAVA 多线程 经典实例-弹跳小球

import java.awt.*;import java.lang.*;import java.awt.event.*;import javax.swing.*;import java.util.*...
内容举报
返回顶部
收藏助手
不良信息举报
您举报文章:深度学习:神经网络中的前向传播和反向传播算法推导
举报原因:
原因补充:

(最多只允许输入30个字)