【第22期】观点:IT 行业加班,到底有没有价值?

算法时间复杂度计算方法

原创 2016年05月30日 15:09:41

一、概念:
时间复杂度是总运算次数表达式中受n的变化影响最大的那一项(不含系数)
比如:一般总运算次数表达式类似于这样:
a*2^n+b*n^3+c*n^2+d*n*lg(n)+e*n+f
a ! =0时,时间复杂度就是O(2^n);
a=0,b<>0 =>O(n^3);
a,b=0,c<>0 =>O(n^2)依此类推
实例:

for(i=1;i<=n;i++) {//循环了n*n次,当然是O(n^2)
    for(j=1;j<=n;j++) {
        s++;
    }
}   
for(i=1;i<=n;i++) {//循环了(n+n-1+n-2+...+1)≈(n^2)/2,因为时间复杂度是不考虑系数的,所以也是O(n^2)
    for(j=i;j<=n;j++) {
        s++;
    }
}   
for(i=1;i<=n;i++) {//循环了(1+2+3+...+n)≈(n^2)/2,当然也是O(n^2)
    for(j=1;j<=i;j++) {
        s++;
    }
}
i=1;k=0;
while(i<=n-1){ //循环了n-1≈n次,所以是O(n)
    k+=10*i;
    i++;
}
for(i=1;i<=n;i++) { //循环了(1^2+2^2+3^2+...+n^2)=n(n+1)(2n+1)/6(这个公式要记住哦)≈(n^3)/3,不考虑系数,自然是O(n^3)
    for(j=1;j<=i;j++) {
        for(k=1;k<=j;k++) {
            x=x+1;
        }
    }
}
i=1;  
while (i<=n) {
    i=i*2;
}
/*解:语句1的频度是1,  
    设语句2的频度是t,  则:nt<=n;  t<=log2n
    考虑最坏情况,取最大值t=log2n,
    T(n) = 1 + log2n
    f(n) = log2n
    lim(T(n)/f(n)) = 1/log2n + 1 = 1
    T(n) = O(log2n)*/

另外,在时间复杂度中,log(2,n)(以2为底)与lg(n)(以10为底)是等价的,因为对数换底公式:
log(a,b)=log(c,b)/log(c,a)
所以,log(2,n)=log(2,10)*lg(n),忽略掉系数,二者当然是等价的

二、计算方法:
求解算法的时间复杂度的具体步骤是:
  ⑴ 找出算法中的基本语句;
  算法中执行次数最多的那条语句就是基本语句,通常是最内层循环的循环体。
  ⑵ 计算基本语句的执行次数的数量级;
  只需计算基本语句执行次数的数量级,这就意味着只要保证基本语句执行次数的函数中的最高次幂正确即可,可以忽略所有低次幂和最高次幂的系数。这样能够简化算法分析,并且使注意力集中在最重要的一点上:增长率。
  ⑶ 用大Ο记号表示算法的时间性能。
  将基本语句执行次数的数量级放入大Ο记号中。
  如果算法中包含嵌套的循环,则基本语句通常是最内层的循环体,如果算法中包含并列的循环,则将并列循环的时间复杂度相加。例如:
  for (i=1; i<=n; i++)
  x++;
  for (i=1; i<=n; i++)
  for (j=1; j<=n; j++)
  x++;
  第一个for循环的时间复杂度为Ο(n),第二个for循环的时间复杂度为Ο(n^2),则整个算法的时间复杂度为Ο(n+n^2)=Ο(n^2)。
常见的时间复杂度:
常见的算法时间复杂度由小到大依次为:
  Ο(1)<Ο(log2n)<Ο(n)<Ο(nlog2n)<Ο(n^2)<Ο(n^3)<…<Ο(2^n)<Ο(n!)

其中,
1.Ο(1)表示基本语句的执行次数是一个常数,一般来说,只要算法中不存在循环语句,其时间复杂度就是Ο(1)。
2.O(n),O(n^2), 立方阶O(n^3),…, k次方阶O(n^k) 为多项式阶时间复杂度,分别称为一阶时间复杂度,二阶时间复杂度。。。。
3.O(2^n),指数阶时间复杂度,该种不实用
4.对数阶O(log2n), 线性对数阶O(nlog2n),除了常数阶以外,该种效率最高
例:算法:

for(i=1;i<=n;++i)
  {
     for(j=1;j<=n;++j)
     {
         c[ i ][ j ]=0; //该步骤属于基本操作 执行次数:n^2
          for(k=1;k<=n;++k)
               c[ i ][ j ]+=a[ i ][ k ]*b[ k ][ j ]; //该步骤属于基本操作 执行次数:n^3
     }
  }

则有 T(n)= n^2+n^3,根据上面括号里的同数量级,我们可以确定 n^3为T(n)的同数量级
则有f(n)= n^3,然后根据T(n)/f(n)求极限可得到常数c
则该算法的 时间复杂度:T(n)=O(n^3)

版权声明: 举报

相关文章推荐

如何计算时间复杂度

一、概念 时间复杂度是总运算次数表达式中受n的变化影响最大的那一项(不含系数) 比如:一般总运算次数表达式类似于这样: a*2^n+b*n^3+c*n^2+d*n*lg(n)+e*n+f a ! =...

关于计算时间复杂度和空间复杂度

相信学习编程的同学,或多或少都接触到算法的时间复杂度和空间复杂度了,那我来讲讲怎么计算。        常用的算法的时间复杂度和空间复杂度 一,求解算法的时间复杂度,其具体步骤是:   ⑴ 找出算法...

程序员升职加薪指南!还缺一个“证”!

CSDN出品,立即查看!

算法的时间复杂度和空间复杂度-总结

算法的时间复杂度和空间复杂度 1、时间复杂度 (1)时间频度 一个算法执行所耗费的时间,从理论上是不能算出来的,必须上机运行测试才能知道。但我们不可能也没有必要对每个算法都上机测试,只需知道哪个算法...

CentOS 编译Hadoop 2.6 32位

本文采用CenOS 6 32位,JDK1.7进行编译 (1)安装编译库yum install cmake lzo-devel zlib-devel gcc gcc-c++ autoconf auto...

sql关键字的解释执行顺序

有一次笔试考到了关于SQL关键字执行顺序的知识点。 我们做软件开发的,大部分人都离不开跟数据库打交道,特别是erp开发的,跟数据库打交道更是频繁,存储过程动不动就是上千行,如果数据量大,人员流动大,...

多人聊天室

最近学完网络线程协议 ,因此写了一个用java编写的聊天室 话不多说 效果如图 首先 创建服务器端

微软面试100题2010年版全部答案集锦(含下载地址)

微软等数据结构+算法面试100题全部答案集锦作者:July、阿财。时间:二零一一年十月十三日。引言     无私分享造就开源的辉煌。     今是二零一一年十月十三日,明日14日即是本人刚好开博一周年...

CSDN日报20170725——《新的开始,从研究生到入职亚马逊》

开始适应新生活,也重新开始走自己的学习节奏。希望渐渐能多写一些技术文章,继续学习进步!这篇“回归”的文章就先简要总结一下这一年半的经历吧,也算是给过去的生活画上个句号。

毕业了,开始新的生活!

转眼间就毕业了,短短的18个月过得真快!因为一直忙于上课找工作,所以好久没发文章了。现在已经重新开始上班一个月了,渐渐安稳了下来。开始适应新生活,也重新开始走自己的学习节奏。希望渐渐能多写一些技术文章...
  • dc_726
  • dc_726
  • 2017-07-25 07:48
  • 19693

数据模型

数据模型 一、所描述的内容 1.包括三个部分:数据结构、数据操作、数据约束。      1)数据结构: 数据模型中的数据结构主要描述数据的类型、内容、性质以及数据间的联系等。数据结构是数据模型的...
收藏助手
不良信息举报
您举报文章:深度学习:神经网络中的前向传播和反向传播算法推导
举报原因:
原因补充:

(最多只允许输入30个字)