算法时间复杂度计算方法

原创 2016年05月30日 15:09:41

一、概念:
时间复杂度是总运算次数表达式中受n的变化影响最大的那一项(不含系数)
比如:一般总运算次数表达式类似于这样:
a*2^n+b*n^3+c*n^2+d*n*lg(n)+e*n+f
a ! =0时,时间复杂度就是O(2^n);
a=0,b<>0 =>O(n^3);
a,b=0,c<>0 =>O(n^2)依此类推
实例:

for(i=1;i<=n;i++) {//循环了n*n次,当然是O(n^2)
    for(j=1;j<=n;j++) {
        s++;
    }
}   
for(i=1;i<=n;i++) {//循环了(n+n-1+n-2+...+1)≈(n^2)/2,因为时间复杂度是不考虑系数的,所以也是O(n^2)
    for(j=i;j<=n;j++) {
        s++;
    }
}   
for(i=1;i<=n;i++) {//循环了(1+2+3+...+n)≈(n^2)/2,当然也是O(n^2)
    for(j=1;j<=i;j++) {
        s++;
    }
}
i=1;k=0;
while(i<=n-1){ //循环了n-1≈n次,所以是O(n)
    k+=10*i;
    i++;
}
for(i=1;i<=n;i++) { //循环了(1^2+2^2+3^2+...+n^2)=n(n+1)(2n+1)/6(这个公式要记住哦)≈(n^3)/3,不考虑系数,自然是O(n^3)
    for(j=1;j<=i;j++) {
        for(k=1;k<=j;k++) {
            x=x+1;
        }
    }
}
i=1;  
while (i<=n) {
    i=i*2;
}
/*解:语句1的频度是1,  
    设语句2的频度是t,  则:nt<=n;  t<=log2n
    考虑最坏情况,取最大值t=log2n,
    T(n) = 1 + log2n
    f(n) = log2n
    lim(T(n)/f(n)) = 1/log2n + 1 = 1
    T(n) = O(log2n)*/

另外,在时间复杂度中,log(2,n)(以2为底)与lg(n)(以10为底)是等价的,因为对数换底公式:
log(a,b)=log(c,b)/log(c,a)
所以,log(2,n)=log(2,10)*lg(n),忽略掉系数,二者当然是等价的

二、计算方法:
求解算法的时间复杂度的具体步骤是:
  ⑴ 找出算法中的基本语句;
  算法中执行次数最多的那条语句就是基本语句,通常是最内层循环的循环体。
  ⑵ 计算基本语句的执行次数的数量级;
  只需计算基本语句执行次数的数量级,这就意味着只要保证基本语句执行次数的函数中的最高次幂正确即可,可以忽略所有低次幂和最高次幂的系数。这样能够简化算法分析,并且使注意力集中在最重要的一点上:增长率。
  ⑶ 用大Ο记号表示算法的时间性能。
  将基本语句执行次数的数量级放入大Ο记号中。
  如果算法中包含嵌套的循环,则基本语句通常是最内层的循环体,如果算法中包含并列的循环,则将并列循环的时间复杂度相加。例如:
  for (i=1; i<=n; i++)
  x++;
  for (i=1; i<=n; i++)
  for (j=1; j<=n; j++)
  x++;
  第一个for循环的时间复杂度为Ο(n),第二个for循环的时间复杂度为Ο(n^2),则整个算法的时间复杂度为Ο(n+n^2)=Ο(n^2)。
常见的时间复杂度:
常见的算法时间复杂度由小到大依次为:
  Ο(1)<Ο(log2n)<Ο(n)<Ο(nlog2n)<Ο(n^2)<Ο(n^3)<…<Ο(2^n)<Ο(n!)

其中,
1.Ο(1)表示基本语句的执行次数是一个常数,一般来说,只要算法中不存在循环语句,其时间复杂度就是Ο(1)。
2.O(n),O(n^2), 立方阶O(n^3),…, k次方阶O(n^k) 为多项式阶时间复杂度,分别称为一阶时间复杂度,二阶时间复杂度。。。。
3.O(2^n),指数阶时间复杂度,该种不实用
4.对数阶O(log2n), 线性对数阶O(nlog2n),除了常数阶以外,该种效率最高
例:算法:

for(i=1;i<=n;++i)
  {
     for(j=1;j<=n;++j)
     {
         c[ i ][ j ]=0; //该步骤属于基本操作 执行次数:n^2
          for(k=1;k<=n;++k)
               c[ i ][ j ]+=a[ i ][ k ]*b[ k ][ j ]; //该步骤属于基本操作 执行次数:n^3
     }
  }

则有 T(n)= n^2+n^3,根据上面括号里的同数量级,我们可以确定 n^3为T(n)的同数量级
则有f(n)= n^3,然后根据T(n)/f(n)求极限可得到常数c
则该算法的 时间复杂度:T(n)=O(n^3)

如何计算时间复杂度

一、概念 时间复杂度是总运算次数表达式中受n的变化影响最大的那一项(不含系数) 比如:一般总运算次数表达式类似于这样: a*2^n+b*n^3+c*n^2+d*n*lg(n)+e*n+f a ! =...
  • firefly_2002
  • firefly_2002
  • 2012年09月23日 09:14
  • 205678

关于计算时间复杂度和空间复杂度

相信学习编程的同学,或多或少都接触到算法的时间复杂度和空间复杂度了,那我来讲讲怎么计算。        常用的算法的时间复杂度和空间复杂度 一,求解算法的时间复杂度,其具体步骤是:   ⑴ 找出算法...
  • yangwei282367751
  • yangwei282367751
  • 2016年09月04日 00:09
  • 15641

如何计算时间复杂度

看了此篇博客,麻麻再也不用担心的你学习了。再遇到时间复杂度的时候,就是这么简单。 一、概念时间复杂度是总运算次数表达式中受n的变化影响最大的那一项(不含系数) 比如:一般总运算次数表达式类似于这...
  • u013037201
  • u013037201
  • 2015年10月28日 21:55
  • 795

如何计算时间复杂度

求解算法的时间复杂度的具体步骤是:   ⑴ 找出算法中的基本语句;   算法中执行次数最多的那条语句就是基本语句,通常是最内层循环的循环体。   ⑵ 计算基本语句的执行次数的数量级;   只需...
  • missshirly
  • missshirly
  • 2012年02月13日 19:19
  • 53901

常用的排序算法的时间复杂度和空间复杂度

常用的排序算法的时间复杂度和空间复杂度排序法 最差时间分析平均时间复杂度 稳定度 空间复杂度 冒泡排序O(n2)O(n2) 稳定 O(1) 快速排序O(n2)O(n*log2n) 不稳定 O(log2...
  • wuxinyicomeon
  • wuxinyicomeon
  • 2010年11月09日 07:52
  • 183074

如何计算一个算法的时间复杂度

     学习算法的同学,如果不知道计算一个算法的时间复杂度该如何计算,其实是一件很丢脸的事情。最近选修了高级算法这门课,由于时间紧张,原本就想混过去算了,但是不料考试的时候有40%的题目是计算时间复...
  • xingqisan
  • xingqisan
  • 2008年11月02日 10:27
  • 33313

算法的时间复杂度和空间复杂度-总结

算法的时间复杂度和空间复杂度 1、时间复杂度 (1)时间频度 一个算法执行所耗费的时间,从理论上是不能算出来的,必须上机运行测试才能知道。但我们不可能也没有必要对每个算法都上机测试,只需知道哪个算法...
  • zolalad
  • zolalad
  • 2013年09月20日 16:01
  • 98319

如何计算时间算法复杂度

原地址:http://www.nowamagic.net/librarys/veda/detail/2195 在进行算法分析时,语句总的执行次数T(n)是关于问题规模n的函数,进而分析T(n)随n的...
  • Com_ice
  • Com_ice
  • 2018年01月10日 16:15
  • 260

如何计算时间复杂度

一、概念时间复杂度是总运算次数表达式中受n的变化影响最大的那一项(不含系数) 比如:一般总运算次数表达式类似于这样: a*2^n+b*n^3+c*n^2+d*n*lg(n)+e*n+f a ! =0时...
  • z55887
  • z55887
  • 2015年12月20日 11:44
  • 482

算法复杂度的计算

算法复杂度是在《数据结构》这门课程的第一章里出现的,因为它稍微涉及到一些数学问题,所以很多同学感觉很难,加上这个概念也不是那么具体,更让许多同学学起来无从下手,下面我们就这个问题给各位考生进行分析。首...
  • iluna
  • iluna
  • 2009年05月08日 08:23
  • 16352
内容举报
返回顶部
收藏助手
不良信息举报
您举报文章:算法时间复杂度计算方法
举报原因:
原因补充:

(最多只允许输入30个字)