【数据挖掘 sklearn】knn解决三分类问题

主要内容:
1、knn工作原理
2、knn开发流程
3、knn算法特点
4、项目实战:knn实现 iris鸢尾花数据集三分类问题

一、KNN 工作原理
1、假设有一个带有标签的样本数据集(训练样本集),其中包含每条数据与所属分类的对应关系。
2、输入没有标签的新数据后,将新数据的每个特征与样本集中数据对应的特征进行比较。

    2.1、计算新数据与样本数据集中每条数据的距离。
    2.2、对求得的所有距离进行排序(从小到大,越小表示越相似)。
    2.3、取前 k (k 一般小于等于 20 )个样本数据对应的分类标签。

3、求 k 个数据中出现次数最多的分类标签作为新数据的分类。

二、KNN 开发流程
收集数据:任何方法
准备数据:距离计算所需要的数值,最好是结构化的数据格式
分析数据:任何方法
训练算法:此步骤不适用于 k-近邻算法
测试算法:计算错误率
使用算法:输入样本数据和结构化的输出结果,然后运行 k-近邻算法判断输入数据分类属于哪个分类,最后对计算出的分类执行后续处理

三、KNN 算法特点
优点:精度高、对异常值不敏感、无数据输入假定
缺点:计算复杂度高、空间复杂度高
适用数据范围:数值型和标称型

四、项目实战:knn实现 iris鸢尾花数据集三分类问题

#coding:utf-8
from __future__ import division
import sys
reload(sys)
sys.setdefaultencoding('utf-8')
import time
start_time = time.time()
import pandas as pd


# 从sklearn.datasets 导入 iris数据加载器。
from sklearn.datasets import load_iris
# 使用加载器读取数据并且存入变量iris。
iris = load_iris()
# 查验数据规模。
print iris.data.shape

# 从sklearn.cross_validation里选择导入train_test_split用于数据分割。
from sklearn.model_selection import train_test_split
# 从使用train_test_split,利用随机种子random_state采样25%的数据作为测试集。
X_train, X_test, y_train, y_test = train_test_split(iris.data, iris.target, test_size=0.25, random_state=33)



# 从sklearn.preprocessing里选择导入数据标准化模块。
from sklearn.preprocessing import StandardScaler
# 从sklearn.neighbors里选择导入KNeighborsClassifier,即K近邻分类器。
from sklearn.neighbors import KNeighborsClassifier

# 对训练和测试的特征数据进行标准化。
ss = StandardScaler()
X_train = ss.fit_transform(X_train)
X_test = ss.transform(X_test)

# 使用K近邻分类器对测试数据进行类别预测,预测结果储存在变量y_predict中。
knc = KNeighborsClassifier()
knc.fit(X_train, y_train)
y_predict = knc.predict(X_test)



# 使用模型自带的评估函数进行准确性测评。
print 'The accuracy of K-Nearest Neighbor Classifier is', knc.score(X_test, y_test)


# 依然使用sklearn.metrics里面的classification_report模块对预测结果做更加详细的分析。
from sklearn.metrics import classification_report
print classification_report(y_test, y_predict, target_names=iris.target_names)
"D:\Program Files\Python27\python.exe" D:/PycharmProjects/sklearn/knn.py
(150L, 4L)
The accuracy of K-Nearest Neighbor Classifier is 0.894736842105
             precision    recall  f1-score   support

     setosa       1.00      1.00      1.00         8
 versicolor       0.73      1.00      0.85        11
  virginica       1.00      0.79      0.88        19

avg / total       0.92      0.89      0.90        38


Process finished with exit code 0
  • 2
    点赞
  • 18
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 0
    评论
决策树是一种常见的机器学习方法,用于分类和回归任务。在决策树中,每个内部节点表示一个属性测试,每个叶节点表示一个类别或一个回归值。决策树的学习过程是通过对训练数据集进行递归划分,使得每个子节点的样本尽可能属于同一类别或具有相似的回归值。 K最近邻算法(KNN)是一种基于实例的学习方法,用于分类和回归任务。在KNN中,对于一个新的样本,通过计算其与训练集中所有样本的距离,并选择距离最近的K个样本作为邻居。然后,根据邻居的类别(对于分类任务)或平均值(对于回归任务),预测新样本的类别或回归值。 在Python中,可以使用scikit-learn库来实现KNN和决策树算法。下面是一个示例代码,演示如何使用Python进行数据挖掘中的KNN和决策树: ```python # 导入所需的库 from sklearn.datasets import load_iris from sklearn.model_selection import train_test_split from sklearn.neighbors import KNeighborsClassifier from sklearn.tree import DecisionTreeClassifier from sklearn.metrics import accuracy_score # 加载数据集 iris = load_iris() X = iris.data y = iris.target # 划分训练集和测试集 X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42) # 创建KNN分类器并进行训练和预测 knn = KNeighborsClassifier(n_neighbors=3) knn.fit(X_train, y_train) knn_pred = knn.predict(X_test) # 创建决策树分类器并进行训练和预测 dt = DecisionTreeClassifier() dt.fit(X_train, y_train) dt_pred = dt.predict(X_test) # 计算准确率 knn_accuracy = accuracy_score(y_test, knn_pred) dt_accuracy = accuracy_score(y_test, dt_pred) # 打印结果 print("KNN准确率:", knn_accuracy) print("决策树准确率:", dt_accuracy) ``` 这段代码演示了如何使用KNN和决策树算法对鸢尾花数据集进行分类,并计算了它们的准确率。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

东华果汁哥

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值