推荐系统大师项亮都来了,就问你约不约?

原创 2016年07月14日 02:58:58

导读: 今天小编要和大家聊一位在国内推荐系统领域中理论与实践并重的专家——项亮。他将参加我们 7 月 28 日在北京国际饭店举行的 QingCloud Insight 2016 大会,并分享他在大数据分析领域精彩的实践经验。欢迎大家关注并通过文末二维码扫描注册参会。

项亮最早进入我们的视野,是在 2006 年 10 月 Netflix 发起的名为Netflix Prize 的一项竞赛中:

任何组织或个人只要能够提交比它现有电影推荐系统 Cinematch 效果好 10% 的新方法,就可以获得一百万美元的奖金,除此之外,还能挑战 Netflix 的推荐系统。

这引起了众多推荐系统技术研究团体的兴趣。

说到这,你一定好奇 Netflix 的推荐系统到底是有多牛?敢于推出这项挑战。

小编举一例子,现在电影电视剧非常多,你会选择哪些来观看呢?

也许你会听信朋友的推荐,或者是新闻上公布的票房,或者是豆瓣上的评分,再或者就凭自己的直觉。然而如果有一位朋友特别了解你的喜好,每次给你推荐的电影你还都很喜欢,你是不是觉得太好了?这个朋友就是 Netflix 。

前一段时间,网上有一部非常有名的美剧纸牌屋,就是由 Netflix 自行制作并且完全依靠网络发行的电视剧,这部剧大获成功,帮助 Netflix 订阅用户超越了 HBO 电视网。而 Netflix 其实在剧集热播之前就知道该剧一定会火,这个秘诀就来自于 Netflix 的大数据分析技术。

用户只要登录 Netflix ,其每一次点击、播放、暂停甚至看了几分钟就关闭视频,都会被作为数据存入后台进行分析。而这样 Netflix 就可以精确定位观众的偏好习惯,比如“最爱凯文-史派西(纸牌屋主演)”,或“最爱政治剧”。

Netflix 在拍摄前事先分析了订阅用户们的观影数据和操作习惯,保证纸牌屋剧集可以精确命中最大量的潜在观众。纸牌屋的成功很大程度上源于 Netflix 优异的数据分析能力,它有着世界上最好的推荐系统。

当时,项亮所在的 The Ensemle 团队也参加了 Netflix Prize 的推荐系统比赛,并获得了第二名的成绩。其实他们最后的结果与冠军团队准确率都是相同的 10.06 %,但项亮他们提交时间比冠军晚了一点,无奈只能屈居亚军。

说了这么久,那什么才是推荐系统?

随着信息技术和互联网的发展,人们逐渐从信息匮乏的时代走入了信息过载的时代。在这个时代,无论是信息消费者还是信息生产者都遇到了很大的挑战:对于信息消费者,从大量信息中找到自己感兴趣的信息是一件非常困难的事情;对于信息生产者,让自己生产的信息脱颖而出,受到广大用户的关注,也是一件非常苦难的事情。

推荐系统就是解决这一矛盾的重要工具。 推荐系统的任务就是联系用户和信息:

  • 一方面帮助用户发现对自己有价值的信息;
  • 另一方面让信息能够展现在对它感兴趣的用户面前,从而实现信息消费者和信息生产者的双赢。

如果你也致力于这个技术的研究和实施,小编建议你读一下《推荐系统实践》,该书的作者就是项亮。他在书中传授了推荐系统的实战经验,着重介绍了推荐系统的各种算法设计和系统设计的方法,并且利用一些公开的数据集离线评测了各种算法,对推动推荐系统领域的发展起到了非常重要的作用。

PS:我们在项亮演讲的时候也会准备该书籍,送给现场提问的同学,福利一定要抓住哦。

怎么和技术大牛学习经验?

经小编介绍完,是不是对这位技术大牛更加仰慕?那想不想在现场聆听他亲自带来的技术分享呢?

现在机会来了,7 月 28 日,以『科技,洞见未来』为主题的 QingCloud Insight 2016 大会将在北京国际饭店举行,届时项亮将会在数据时代的技术与应用”分论坛中带来《分布式机器学习》的主题分享,通过几个典型算法回顾过去几年分布式机器学习的发展。你将还有机会和他直接沟通,面对面地进行技术交流哦,还不快来!

现在拿起你的手机,扫描上方二维码就可以注册参加 QingCloud Insight 2016 大会。门票免费,成功邀请 3 名好友还可在现场领取 QingCloud 精美双肩背包一个!数量有限,快来参加吧!

版权声明:本文为博主原创文章,未经博主允许不得转载。

读 项亮《推荐系统实践》

前段时间对推荐系统很感兴趣,所以拿到了这本书,几乎都是用碎片时间阅读的,所以大概看了两个多月。 因为没有看过推荐系统其他的书,所以无法横向评价,但对于一个认知为零的人,从该书中受益还是很大的。 ...
  • qiqll
  • qiqll
  • 2014年11月25日 18:21
  • 4466

Machine Learning-Recommender Systems(推荐系统)

Predicting Movie Ratings Problem Formulation 推荐系统问题就是,给定这些数据,给定这些 r(i,j)r(i, j) 和y(i,j) y(i, j) 数值,...
  • dingchenxixi
  • dingchenxixi
  • 2016年06月21日 15:25
  • 1071

各大牛逼网站推荐系统

1. 前言 随着互联网技术和社会化网络的发展,每天有大量包括博客,图片,视频,微博等等的信息发布到网上。传统的搜索技术已经不能满足用户对信息发现的需求,原因有多种,可能是用户很难用合适的关键...
  • Rachel715
  • Rachel715
  • 2016年06月22日 11:00
  • 2683

项亮《推荐系统实践》读书笔记1-推荐系统评价指标

推荐系统评价指标1.评分预测 预测准确度: 均方根误差(RMSE): 平均绝对误差(MAE): 关于这两个指标的优缺点,Netflix认为RMSE加大了对预测不准的用户物品评分的惩罚(...
  • Zhangjunjie789
  • Zhangjunjie789
  • 2016年05月11日 22:41
  • 7120

【学习笔记】读项亮的《推荐系统实践》_第六章利用社交网络数据

这一章更多的介绍的也是思想,而非具体的算法。看得也快,不到30分钟,浏览完。 6.1 获得社交网络数据的途径 没想到email是一个很好的途径,能获得挺多信息,如:名字、公司等。 其他的...
  • xceman1997
  • xceman1997
  • 2013年04月01日 23:36
  • 1452

推荐系统实践 项亮著 (页数全)

  • 2013年07月02日 16:50
  • 20.57MB
  • 下载

推荐系统实践(高清)PDF版

  • 2016年12月06日 13:54
  • 15.62MB
  • 下载

推荐系统大师项亮都来了,就问你约不约?

导读: 今天小编要和大家聊一位在国内推荐系统领域中理论与实践并重的专家——项亮。他将参加我们 7 月 28 日在北京国际饭店举行的 QingCloud Insight 2016 大会,并分享他在大数据...
  • u013424982
  • u013424982
  • 2016年07月14日 02:58
  • 2143

推荐系统实践 项亮

  • 2017年07月23日 16:51
  • 12.31MB
  • 下载

推荐系统实践 pdf

项亮写的,是本入门的好书,放在这里以飨同好 http://ishare.iask.sina.com.cn/f/68626549.html...
  • qwert54321qwe
  • qwert54321qwe
  • 2014年04月03日 10:48
  • 847
内容举报
返回顶部
收藏助手
不良信息举报
您举报文章:推荐系统大师项亮都来了,就问你约不约?
举报原因:
原因补充:

(最多只允许输入30个字)