核相关滤波-KCF-视频跟踪算法解析(1)

原创 2016年05月31日 15:33:11

动机: 大部分基于检测的视频跟踪算法,当选取充足的样本时,计算量太大无法保证跟踪算法的实时性,因此,大部分基于检测的算法都以牺牲样本的数量来保证算法的实时性。这使得跟踪算法的鲁棒性比较差。因此,有没有一种比交好的方法,既能保证实时性又能尽量选取足够的的样本进行训练呢? 本文给出的答案是:可以的。

分析: 

1.岭回归即最小二乘加一个正则项(二范数),公式如下:

2对于岭回归,它唯一的优点就是有解析解(封闭解),通过求偏导数,进行化简,最后解析解的形式如下式:


3本文就是在w的求解过程处做的改进。在(2)式中,求w必须要求矩阵的逆,矩阵求逆是一个非常耗时的过程,因此,如果w的求解可以用一种计算复杂度低的方法来解决,那么整个算法的时间复杂度就会大大降低。本文,利用循环矩阵对角化的性质和离散傅里叶变换和逆变换,得到了一个计算复杂度为nlogn 的求解w的方法。


检测目标位置的计算时间降低了,但是,我们训练那么多样本,不还是需要花费很多时间吗?可不可以也改进一下样本训练参数的时间呢?文章的答案是:可以。

5利用选取的样本,文章将样本变成循环矩阵,然后利用对角化和离散傅里叶变换的性质,大大缩减计算复杂度,从而提高训练速度。

4到现在,跟踪算法的计算时间大大缩短了,我们可以选取足够多的样本进行训练,在保证算法实时性的同时,也保证了算法的鲁棒性。

现在,论文的整体创新思路应该清晰了。下一步,本人将会对每一部分进行详细介绍。

版权声明:本文为博主原创文章,未经博主允许不得转载。

相关文章推荐

相关滤波跟踪(MOSSE)

转载自:http://blog.csdn.net/autocyz/article/details/48136473 相关滤波跟踪(MOSSE) 在信号处理中,有这么一个概念——相关性(co...

<<High-Speed Tracking with Kernelized Correlation Filters>> KCF(核化相关滤波)跟踪算法学习笔记

学习KCF有段时间了,为了梳理一下所学知识,写下这篇学习笔记,如有不足之处还请阅者指出。 KCF是CSK(eccv2012_Exploiting the Circulant Structure of ...

2017目标跟踪算法综述

转自  https://www.zhihu.com/question/26493945 作者:YaqiLYU 链接:https://www.zhihu.com/question/26493945/a...

KCF论文阅读笔记

本文是对PAMI2015的《SHigh-Speed Tracking with Kernelized Correlation Filters》这篇文章的阅读笔记,属于单目标跟踪领域。

2014新跟踪算法KCF笔记

作者的主页:http://home.isr.uc.pt/~henriques/ 可以下载到文章和代码,文章的名字叫 High-Speed Tracking with Kernelized Corre...

MF RC500的Mifare射频卡读写器设计

0 引 言 射频识别(Radio Frequency Identification。以下简称RFID[1]技术,是利用无线射频方式进行非接触双向通信并交换数据,以达到识别目的。与传统的条码或磁条识别...

核相关跟踪

这篇文章主要通过讲解KCF跟踪算法,来加深对相关滤波跟踪方法的理解。

基于核化相关滤波器的跟踪-效果直逼Struck和TLD跟踪器

原文:http://cvlab.hanyang.ac.kr/tracker_benchmark_v10.html 作者ECCV2012的文章就被我关注过,速度惊人的快。2015年新作出来了。发文以供...
内容举报
返回顶部
收藏助手
不良信息举报
您举报文章:深度学习:神经网络中的前向传播和反向传播算法推导
举报原因:
原因补充:

(最多只允许输入30个字)