风暴项目个性化推荐系统浅析

原创 2016年05月30日 13:23:43

风暴项目的主要任务是搭建自媒体平台,作为主开发人员的我希望把工作重心放在个性化推荐系统上。

目前风暴项目的个性化推荐是基于用户行为信息记录实现的,也就是说对于每条资讯,数据库中有字段标明其类型。建立一张用户浏览表,对用户的浏览行为进行记录,从中可以获取当前用户对哪类资讯感兴趣。

若用户第一次登陆,则按默认规则选取热点资讯做推荐,及所有资讯按浏览量降序排序,取前4个。另外,我考虑到后期可能有商业合作,需要人为的推荐上榜(参考新浪微博的上热点)。所以对于每条资讯,再增加is_hot字段,扫描所有资讯,把人为推荐的热点加入推荐列表。

若用户不是第一次登录,则查找该用户的浏览记录,取其浏览量最多的资讯类型,对该类型下资讯降序排列,取前4个。然后考虑人为推荐,操作同上。

-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------

(分割线)

曾经看过一段时间机器学习,颇感兴趣。所以,我考虑后期采用基于用户的协同过滤算法对个性化推荐系统进行改进。

首先,我们的推荐是基于用户的,也就是说对于当前用户,我们找到跟他兴趣喜好相近的K个用户,依据这K个用户对当前用户进行资讯推荐。这里需要对资讯的喜好标识做下规定,每条资讯1~5分,由用户进行评判,据此得出用户的喜好。

然后,如何找到跟他喜好相近的用户。遍历整张表去查找跟当前用户有相同喜好的其他用户固然可行,一旦这张表过大,遍历必然耗时。所以建立一张资讯用户反查表,记录该条资讯有哪些用户喜欢,这样可以快速的找到和当前用户有相近喜好的所有用户。

接下来就是相似度计算,这里我采用余弦相似性计算,cos(a,b) = <a,b>/ (|a|*|b|),a、b均为向量。分别计算出的每个用户和当前用户的相似度,据此找出与当前用户喜好相近的前K个用户。

最后,我们根据之前计算出的相似度作为权值,每条资讯作权值和对应用户喜欢的乘积累加和,结果降序排列取前4即可。


总结:

1.计算其他用户和你的相似度,利用反查表排除与你无关的用户。

2.根据相似度降序取前K个与你喜好相近的用户。

3.在K个用户喜欢的资讯里,根据相似度计算每条资讯的推荐度

4.根据推荐度降序推荐资讯。

版权声明:本文为博主原创文章,未经博主允许不得转载。

相关文章推荐

推荐系统 --- 实时推荐系统

推荐系统介绍 自从1992年施乐的科学家为了解决信息负载的问题,第一次提出协同过滤算法,个性化推荐已经经过了二十几年的发展。1998年,林登和他的同事申请了“item-to-item”协同过滤技...

个性化push推荐系统架构和经验分享 (二)

这篇文章主要说下我们在个性化推荐策略的选择、实践和总结,没有太多机器学习方面的东西,就是简简单单说说大概的做法。推荐系统主要方法: 协同过滤(Collaborative Filtering) Us...

机器学习 特征工程 特征离散化

如果想深入研究特征离散化,请直接阅读博文最后的英文文献,以免浪费您的时间! 一、什么是特征离散化 简单的说,就是把连续特征分段,每一段内的原始连续特征无差别的看成同一个新特征 二、为什么进行离散...

个性化推荐系统的研究进展

  • 2012年03月21日 19:21
  • 695KB
  • 下载

谈谈国内几款个性化推荐系统插件

首先了解,什么是个性化推荐?个性化阅读?       个性化推荐是根据用户的兴趣特点和需求行为,向用户推荐用户感兴趣的信息和商品。随着电子商务规模的不断扩大,商品个数和种类快速增长,顾客需要花费大量...

个性化推荐系统应用

  • 2014年04月02日 14:21
  • 122KB
  • 下载

如何从零构建实时的个性化推荐系统?

【作者简介:刈刀(程君杰),曾就职于阿里巴巴移动事业部,数据技术专家。主要负责业务数据分析挖掘系统架构和设计,包括大规模数据采集、分析处理、数据挖掘、数据可视化、高性能数据服务等。】 前言 在...
内容举报
返回顶部
收藏助手
不良信息举报
您举报文章:风暴项目个性化推荐系统浅析
举报原因:
原因补充:

(最多只允许输入30个字)