POJ2686 状态压缩

原创 2016年08月30日 21:04:45

n张车票;

m个城市;

p条边,

从u->v 花费len[u][v]/ 所选车票

求从start到end 最小花费

dp[s][u] ,剩余车票集合,当前所在城市u ;

import java.io.BufferedReader;
import java.io.InputStream;
import java.io.InputStreamReader;
import java.io.PrintWriter;
import java.math.BigInteger;
import java.util.Arrays;
import java.util.HashMap;
import java.util.HashSet;
import java.util.Map;
import java.util.Set;
import java.util.StringTokenizer;

public class Main {
	public static void main(String[] args) {
		new POJ2686().solve();
	}
}

class POJ2686 {
	InputReader in = new InputReader(System.in);
	PrintWriter out = new PrintWriter(System.out);

	int[] ticket = new int[10] ;
	double[][] len = new double[108][108] ;
	double[][] dp = new double[1<<10][108] ;
	
	void solve() {
		int n , m , p  , start  , end  ;
		while(true){
			n = in.nextInt() ;
			m = in.nextInt() ;
			p = in.nextInt() ;
			start = in.nextInt() - 1  ;
			end = in.nextInt() - 1 ;
			if(n == 0) break ; 
			for(int i = 0 ; i < m ; i++) Arrays.fill(len[i] , -1) ;
			for(int i = 0 ; i < n ; i++) ticket[i] = in.nextInt() ;
			while(p-- > 0){
				int u = in.nextInt() - 1 ;
				int v = in.nextInt() - 1 ;
				double w = in.nextDouble() ;
				len[u][v] = len[v][u] = w  ;
			}
			
			int all = (1<<n) - 1 ;
			for(int i = 0 ; i <= all ; i++) Arrays.fill(dp[i] , Double.MAX_VALUE) ;
			dp[all][start] = 0 ;
			double res = Double.MAX_VALUE ;
			for(int s = all ; s >= 0 ; s--){
				res = Math.min(res , dp[s][end]) ;
				for(int i = 0 ; i < n ; i++){
					if((s & (1<<i)) == 0) continue ;
					for(int u = 0 ; u < m ; u++){
						for(int v = 0 ; v < m ; v++){
							if(len[u][v] >= 0){
								dp[s ^ (1<<i)][v] = Math.min(dp[s ^ (1<<i)][v] , dp[s][u] + len[u][v] / ticket[i]) ; 
							}
						}
					}
				}
			}
			if(res == Double.MAX_VALUE) 
				 out.println("Impossible") ;
			else{
				 out.printf("%.3f" , res) ;
				 out.println() ;
			}
		}
		out.flush() ;
	}
}

class InputReader {
	public BufferedReader reader;
	public StringTokenizer tokenizer;

	public InputReader(InputStream stream) {
		reader = new BufferedReader(new InputStreamReader(stream), 32768);
		tokenizer = new StringTokenizer("");
	}

	private void eat(String s) {
		tokenizer = new StringTokenizer(s);
	}

	public String nextLine() {
		try {
			return reader.readLine();
		} catch (Exception e) {
			return null;
		}
	}

	public boolean hasNext() {
		while (!tokenizer.hasMoreTokens()) {
			String s = nextLine();
			if (s == null)
				return false;
			eat(s);
		}
		return true;
	}

	public String next() {
		hasNext();
		return tokenizer.nextToken();
	}

	public int nextInt() {
		return Integer.parseInt(next());
	}

	public long nextLong() {
		return Long.parseLong(next());
	}

	public double nextDouble() {
		return Double.parseDouble(next());
	}

	public BigInteger nextBigInteger() {
		return new BigInteger(next());
	}

}


版权声明:本文为博主原创文章,未经博主允许不得转载。

相关文章推荐

POJ 2686-Traveling by Stagecoach(DAG图-状态压缩DP)

Traveling by Stagecoach Time Limit: 2000MS   Memory Limit: 65536K Total Submissions: 2802   A...
  • MIKASA3
  • MIKASA3
  • 2016年05月27日 20:13
  • 331

poj2686(Traveling by Stagecoach)状态压缩dp+DAG

Traveling by Stagecoach Time Limit: 2000MS   Memory Limit: 65536K Total Submissions: 2894   Ac...

Traveling by Stagecoach(POJ-2686)(状态压缩DP)

状态压缩DP和普通DP唯一的区别就是它所枚举的对象不再是一个整数,而是一个集合,解决的策略就是利用二进制将这个集合压缩成一个整数。 对于该题,dp[s][v]表示:s表示在该城市剩下的车票集合,v表...

poj 2686 Traveling by Stagecoach【状态压缩】

题目链接:http://poj.org/problem?id=2686题意: 一个人从某个城市要到另一个城市。然后有n个马车票,相邻的两个城市走的话要消耗掉一个马车票。花费的时间是马车票上有个速率值...

POJ_2686_Traveling by Stagecoach_状态压缩dp

我绝逼是做死小王子

状态压缩DP 之 poj 2686

之前敲了一个 “旅行商问题”

poj 2686 Traveling by Stagecoach ---状态压缩DP

题意:给出一个简单带权无向图和起止点,以及若干张马车车票,每张车票可以雇到相应数量的马。 点 u, v 间有边时,从 u 到 v 或从 v 到 u 必须用且仅用一张车票,花费的时间为 w(u, v)...

poj 2686 状态压缩

题目链接解析状态:现在在城市u,此时还剩下的车票集合为S dp[S][u]dp[S][u]就是这个状态。 从这个状态出发,使用一张车票ii在SS中移动到相邻城市v,就相当于转移到“在城市v,此时还...
  • NLSQQ
  • NLSQQ
  • 2016年08月13日 00:12
  • 111

POJ 2686 Travelling by Stagecoach(状态压缩dp)

题目链接:http://poj.org/problem?id=2686 题意:百度翻译 思路:来自《挑战程序设计》 Page194     虽然可以吧城市看作顶点,道路看作边建图,但是由于车票相关的限...

《挑战程序设计竞赛》3.4.1 动态规划-状态压缩DP POJ3311 2686 2411 2441 3254 2836 1795 3411(2)

POJ3311 旅行商问题http://ac.jobdu.com/problem.php?pid=3311题意给一个起点和终点相同的图,一个矩阵表示各个点之间的距离,求经过所有的点,回到原点的最下路径...
内容举报
返回顶部
收藏助手
不良信息举报
您举报文章:POJ2686 状态压缩
举报原因:
原因补充:

(最多只允许输入30个字)