1003. Emergency (25)

As an emergency rescue team leader of a city, you are given a special map of your country. The map shows several scattered cities connected by some roads. Amount of rescue teams in each city and the length of each road between any pair of cities are marked on the map. When there is an emergency call to you from some other city, your job is to lead your men to the place as quickly as possible, and at the mean time, call up as many hands on the way as possible.

Input

Each input file contains one test case. For each test case, the first line contains 4 positive integers: N (<= 500) - the number of cities (and the cities are numbered from 0 to N-1), M - the number of roads, C1 and C2 - the cities that you are currently in and that you must save, respectively. The next line contains N integers, where the i-th integer is the number of rescue teams in the i-th city. Then M lines follow, each describes a road with three integers c1, c2 and L, which are the pair of cities connected by a road and the length of that road, respectively. It is guaranteed that there exists at least one path from C1 to C2.

Output

For each test case, print in one line two numbers: the number of different shortest paths between C1 and C2, and the maximum amount of rescue teams you can possibly gather.
All the numbers in a line must be separated by exactly one space, and there is no extra space allowed at the end of a line.

Sample Input
5 6 0 2
1 2 1 5 3
0 1 1
0 2 2
0 3 1
1 2 1
2 4 1
3 4 1

Sample Output
2 4

-------------------------------华丽的分割线------------------------------

#include<iostream>
using namespace std;

#define Maxn 501
#define INF 10000000

bool visited[Maxn];
int teams[Maxn];
int dist[Maxn];
int graph[Maxn][Maxn];
int Maxnumofteams[Maxn];
int numofshortestpath[Maxn];

int main(void)
{
int N,M,C1,C2;
int i,j;
for(i=0;i<Maxn;++i)
{
dist[i] = INF;
numofshortestpath[i] = 1;
visited[i] = false;
}

for(i=0;i<Maxn;++i)
for(j=0;j<Maxn;++j)
{
if(i==j)
graph[i][j] = 0;
else
graph[i][j] = INF;
}

cin >> N >> M >> C1 >> C2;
for(i=0;i<N;++i)
{
cin>>teams[i];
}

int inputc1,inputc2,length;

for(i=0;i<M;++i)
{
cin >> inputc1>>inputc2>>length;
graph[inputc1][inputc2] = length;
graph[inputc2][inputc1] = length;
}

dist[C1] = 0;
Maxnumofteams[C1]=teams[C1];
visited[C1] = true;
int newcity=C1;
while(newcity != C2)
{
for(i=0;i<N;++i)
{
if(visited[i] == false)
{
if(dist[i] > (dist[newcity] + graph[newcity][i]))
{
dist[i] = dist[newcity] + graph[newcity][i];
Maxnumofteams[i] = Maxnumofteams[newcity] + teams[i];
numofshortestpath[i] = numofshortestpath[newcity];
}
else if(dist[i] == (dist[newcity] + graph[newcity][i]))
{
numofshortestpath[i] += numofshortestpath[newcity];
if(Maxnumofteams[i] < (Maxnumofteams[newcity] + teams[i]))
{
Maxnumofteams[i] = Maxnumofteams[newcity] + teams[i];
}
}
}
}

int mindist = INF;
for(i=0;i<N;++i)
{
if(dist[i] < mindist && visited[i] == false)
{
mindist = dist[i];
newcity = i;
}
}
visited[newcity] = true;
}
cout << numofshortestpath[C2] << ' ' <<Maxnumofteams[C2];
system("pause");
return 0;
}

• 本文已收录于以下专栏：

【PAT】1003. Emergency (25)

1. 题目地址：http://www.patest.cn/contests/pat-a-practise/10032.分析：本题要求输出特定俩点间最短路径的条数和最短路径中能call up的最多救援队...

1003. Emergency (25)[dfs]

1. 原题：https://www.patest.cn/contests/pat-a-practise/1003 2. 思路： 题意：给出一个无向带权图，求某两点间的最短路径条数。 思路： 单...

• gzxcyy
• 2013年09月29日 15:52
• 686

1003. Emergency (25) 最短路问题

Dijkstra算法可以解决最短路问题，针对单源有向图，属于贪心算法的一种，要求权值非负。算法实现步骤： 初始化：起点dist[s]=0 其他dis...

PAT甲级1003. Emergency (25)

As an emergency rescue team leader of a city, you are given a special map of your country. The map s...

编程题目：PAT(Advanced Level) Practice 1003. Emergency (25)

1003. Emergency (25) 时间限制 400 ms 内存限制 32000 kB 代码长度限制 16000 B ...

PAT 甲级1003. Emergency (25) DIJKSTRA

1003. Emergency (25) 时间限制 400 ms 内存限制 65536 kB 代码长度限制 16000 B ...

【PAT甲级】1003. Emergency (25)

#include #include #include using namespace std;int main(int argc, char *argv[]) { int MAX = 99...

举报原因： 您举报文章：1003. Emergency (25) 色情 政治 抄袭 广告 招聘 骂人 其他 (最多只允许输入30个字)