Machine Learning in Action 学习笔记-(1)

转载 2016年05月30日 16:49:30

第一章引入了监督学习和非监督学习两个概念,介绍了NumbPy库,以及Matplotlib绘图工具协同工作。

值得注意的是NumPy函数库中的matrix与MATLAB中matrices等价。

如何选择合适的算法将会是一个影响我们工作效率的问题,选择了正确的算法,收集数据,准备数据,分析输入数据(洗数据),训练算法,测试算法,使用算法将会是未来的操作流程。

Machine Learning in Action 学习笔记-(4)基于概率论的分类方法:朴素贝叶斯

开篇为我们讲解了许多实际应用情况下,我们可能不需要得到精准的分类,而是属于某一类的概率,以及属于其他类的概率。 这里我就简单的以论坛侮辱性言语检测为例,来讲一下算法的流程。 函数伪代码是: 计算每个类...

机器学习实战(Machine Learning in Action)笔记--Chapter1:机器学习基础

机器学习实战(Machine Learning in Action)笔记–Chapter1:机器学习基础Part1 分类监督学习一般使用两种类型的目标变量:标称型(主要用于分类)、数值型(主要用于回归...

《Machine Learning in Action》 读书笔记之三:朴素贝叶斯(naive Bayes)

1.之所以叫naive bayes,是因为该分类器基于一些naive的假设,即假设数据集的各个特征之间是独立无关的。 2.利用贝叶斯分类器进行分档分类: 1)由训练集文档生成词典: de...

《Machine Learning in Action》 读书笔记之五:AdaBoost Classification

1.bagging:对给定的原始数据集,“有放回”地随机取S次数量为N的数据集,这样得到S个新dataset,学习训练得到S个classifiers,对测试集进行均等投票得到分类结果。 2.boos...

《Machine Learning in Action》惩罚项相关读书笔记

最近在看Machine Learning in Action,打算写一些相关笔记,以后万一要用到相关的知识可以快速回忆起来,也供看这本书或者有相关问题的人参考...

《Machine Learning in Action》 读书笔记之二:决策树(ID3)

1. 对一个数据集,建立决策树,该如何split数据才更好呢,这里引入信息增益(Information Gain)的概念,指的是spilt数据前后信息的变化,在某位特征上split数据得到最大的信息增...

Stanford Online Machine Learning 学习笔记1——单变量线性回归

TomMitchell 对机器学习的定义是:Acomputer program is said to learn from experience E, with respect to some tas...

周志华《Machine Learning》 学习笔记系列(1)

机器学习是目前信息技术中最激动人心的方向之一,其应用已经深入到生活的各个层面且与普通人的日常生活密切相关。本文为清华大学最新出版的《机器学习》教材的Learning Notes,书作者是南京大学周志华...

machine Learning(Andrew Ng) 学习笔记(1)

(1) 监督式学习(supervised learning) 和 非监督式学习(unsupervised learning) 监督学习:监督学习,简单来说就是给定一定的训练样本(这里一定要注意,...

Machine Learning学习笔记(1)Introduction

1、机器学习可以做什么? 搜索引擎、垃圾邮件过滤、人脸识别等等,不仅用于人工智能领域,生物、医疗、机械等很多领域都有应用。2、机器学习的定义 A computer program is sai...
  • acmjk
  • acmjk
  • 2015年05月21日 20:49
  • 1035
内容举报
返回顶部
收藏助手
不良信息举报
您举报文章:Machine Learning in Action 学习笔记-(1)
举报原因:
原因补充:

(最多只允许输入30个字)