关闭

【BZOJ】1012 最大数maxnumber

标签: 单调队列单调栈线段树BZOJ区间最值
256人阅读 评论(0) 收藏 举报
【解析1】线段树

[分析]
这道题数据M<=200000,最直观的就是开棵线段树 O(M log M) 就过了。
没想到随手写的居然一次AC了,以后要杜绝这种坏习惯。

[代码]

<span style="font-size:18px;">#include <cstdio>
#include <cstring>
#include <cstdlib>
#include <climits>
using namespace std;

const int M=200001;
const int L=INT_MAX;
const int P=INT_MIN;

int m,d,q[M][2],qa;
struct SegmentTree
{
	int l,r,mx;
}tr[M<<2];
int lst;

inline int read(void)
{
	int s=0,f=1; char c=getchar();
	for (;c<'0'||c>'9';c=getchar()) if (c=='-') f=-1;
	for (;'0'<=c&&c<='9';c=getchar()) s=(s<<1)+(s<<3)+c-'0';
	return s*f;
}

void build(int now,int l,int r)
{
	tr[now].l=l;
	tr[now].r=r;
	tr[now].mx=L;
	if (l^r)
	{
		int mid=l+r>>1;
		build(now<<1,l,mid);
		build(now<<1|1,mid+1,r);
	}
}

inline int max(int i,int j)
{
	return i>j?i:j;
}

void ins(int now,int loc,int w)
{
	if (tr[now].l==tr[now].r) {tr[now].mx=w;return;}
	int mid=tr[now].l+tr[now].r>>1;
	ins(now<<1|(loc<=mid?0:1),loc,w);
	tr[now].mx=max(tr[now<<1].mx,tr[now<<1|1].mx);
}

int query(int now,int l,int r)
{
	if (l<=tr[now].l&&tr[now].r<=r) return tr[now].mx;
	int mx=P,mid=tr[now].l+tr[now].r>>1;
	if (l<=mid) mx=max(mx,query(now<<1,l,r));
	if (mid<r) mx=max(mx,query(now<<1|1,l,r));
	return mx;
}

int main(void)
{	
	char c;
	m=read(),d=read();
	for (int i=1;i<=m;i++)
	{
		scanf("\n%c",&c);
		if (c=='A') qa++; else q[i][0]=1;
		q[i][1]=read();
	}
	
	build(1,1,qa),qa=0;
	for (int i=1;i<=m;i++)
		if (!q[i][0])
			ins(1,++qa,(lst+q[i][1])%d);
		else printf("%d\n",lst=query(1,qa-q[i][1]+1,qa));
	
	return 0;
}
</span>

【解析2】单调队列+二分搜索

[分析]
建一个单调队列,在队列中存储:
loc:表示它是第loc个插入的,也就是原数列的第loc项;
w:表示这个位置的值。

插入操作:
由于对于后面读进来的元素x,如果满足x大于前面的元素y,则y一定不可能是答案。
所以先从队尾把不符合的给删掉,最后再把x插进去。
这样,就能保证单调队列的双重单调性:loc,w。

查询操作:
查找后x位的最大值,那么也就是查找队列从头起第1个在后x位的loc的w。
由于w的单调性,所以要尽可能在前面。
由于loc的单调性,所以可以使用二分查找。

[代码]

<span style="font-size:18px;">#include <cstdio>
#include <cstring>
#include <cstdlib>
using namespace std;

const int M=200010;

int m,d,lst;
struct Q
{
	int w,loc;
}q[M];
int h,t,ca;

inline int read(void)
{
	int s=0,f=1; char c=getchar();
	for (;c<'0'||c>'9';c=getchar()) if (c=='-') f=-1;
	for (;'0'<=c&&c<='9';c=getchar()) s=(s<<1)+(s<<3)+c-'0';
	return s*f;
}

int main(void)
{	
	char c; int x;
	m=read(),d=read(),h=1;
	
	for (int i=1;i<=m;i++)
	{
		scanf("\n%c",&c),x=read();
		if (c=='A')
		{
			x=(x+lst)%d,ca++;
			for (;h<=t&&x>=q[t].w;t--);
			q[++t].w=x,q[t].loc=ca;
		}
		else
		{
			int l=h,r=t,mid;
			for (;l<=r;)
			{
				mid=l+r>>1;
				ca-q[mid].loc+1<=x?r=mid-1:l=mid+1;
			}
			printf("%d\n",lst=q[l].w);
		}
	}
	
	return 0;
}</span>

【解析3】单调栈:和单调队列差不多.../(ㄒoㄒ)/~~

【小结】对于定向扫过去求最值的问题,可以考虑使用单调栈 or 单调队列。

0
0

查看评论
* 以上用户言论只代表其个人观点,不代表CSDN网站的观点或立场
    个人资料
    • 访问:50016次
    • 积分:1866
    • 等级:
    • 排名:千里之外
    • 原创:137篇
    • 转载:0篇
    • 译文:0篇
    • 评论:3条
    最新评论