【BZOJ】1013 球形空间产生器

原创 2015年07月07日 00:24:29
【解析】代数变形+高斯消元

[分析]
根据题目下面的提示,设x[i][j]表示第i个点在第j维的坐标,r[j]为圆心在第j维的坐标
可以知道:
dis=根号(∑(x[i][j]-r[j])^2)。
由于平方的非负性,所以可以推出 dis^2=∑(x[i][j]-r[j])^2。
根据平方和公式,(x[i][j]-r[j])^2=r[j]^2+x[i][j]^2-2*x[i][j]*r[j]。
∴dis^2=∑r[j]^2+∑x[i][j]^2-∑2*x[i][j]*r[j]。
根据n+1个坐标,可以用i和i+1两个坐标列出等量条件:
∑r[j]^2+∑x[i][j]^2-∑2*x[i][j]*r[j]=∑r[j]^2+∑x[i+1][j]^2-∑2*x[i+1][j]*r[j]。
把∑r[j]^2消去,参数放在右边,未知数放在左边。
化简易得:
∑(x[i+1][j]-x[i][j])*r[j]=(∑x[i+1][j]^2-∑x[i][j]^2)/2。
现在变成了一元n次的方程组,可以直接使用高斯消元求解。
对于∑x[i+1][j]^2,可以全部提前预处理出来,这样会快一点。

[代码]

由于准备要睡觉了没心机检查,结果又一次AC,手感真好...

#include <cstdio>
#include <cstring>
#include <cstdlib>
#include <cmath>
using namespace std;

const int N=15;
const double eps=1e-5;

int n; double x[N][N];
double a[N][N],sum[N],res[N];

void init(void)
{
	scanf("%d",&n);
	for (int i=1;i<=n+1;i++)
		for (int j=1;j<=n;j++)
			scanf("%lf",&x[i][j]);
	
	for (int i=1;i<=n+1;i++)
		for (int j=1;j<=n;j++)
			sum[i]+=x[i][j]*x[i][j];
	for (int i=1;i<=n;i++)
	{
		for (int j=1;j<=n;j++)
			a[i][j]=x[i+1][j]-x[i][j];
		a[i][n+1]=(sum[i+1]-sum[i])/2;
	}
}

inline int cmp(double i,double j)
{
	if (fabs(i-j)<eps) return 0;
	return i<j?-1:1;
}

inline void swap(int i,int j)
{
	for (int k=1;k<=n+1;k++) a[i][k]+=a[j][k];
	for (int k=1;k<=n+1;k++) a[j][k]=a[i][k]-a[j][k];
	for (int k=1;k<=n+1;k++) a[i][k]-=a[j][k];
}

void gauss(void)
{
	double r;
	for (int i=1;i<=n;i++)
	{
		for (int j=i+1;j<=n;j++)
			if (!cmp(a[i][i],0)||cmp(abs(a[i][i]),abs(a[j][i]))>0) swap(i,j);
		for (int j=i+1;j<=n;j++)
			if (cmp(a[i][j],0))
			{
				r=a[j][i]/a[i][i];
				for (int k=i;k<=n+1;k++) a[j][k]-=a[i][k]*r;
			}
	}
	for (int i=n;i;i--)
	{
		for (int j=i+1;j<=n;j++) a[i][n+1]-=a[i][j]*res[j];
		res[i]=a[i][n+1]/a[i][i];
	}
	
	for (int i=1;i<n;i++) printf("%0.3lf ",res[i]);
	printf("%0.3lf\n",res[n]);
}

int main(void)
{
	init();
	gauss();	
	
	return 0;
}

【小结】
①理清思路再开始写,理清思路要把自己不知道怎么写的问题先想好。
②为了保证自己算法的正确性(虽然一般都是正确的),要套几个小例子去验证。

版权声明:本文为博主原创文章,未经博主允许不得转载。

bzoj1013: [JSOI2008]球形空间产生器sphere

传送门:http://www.lydsy.com:808/JudgeOnline/problem.php?id=1013 思路:肯定是解方程... 好像有哪里不对,二次项很坑爹。 但是题目里有n...
  • thy_asdf
  • thy_asdf
  • 2015年07月29日 15:04
  • 864

【bzoj 1013】 [JSOI2008] 球形空间产生器sphere(高斯消元)

横一支玉笛唇旁,叹秋月飞花散作烟
  • reverie_mjp
  • reverie_mjp
  • 2016年04月23日 21:24
  • 304

BZOJ 1013, 球形空间产生器

求给定的n+1个点所确定的n维球面的球心。 高斯消元裸题。(第一次打没有1A很失望) 可以先设球心坐标,用距离公式表示出其与某点的距离。 用该表达式与其他n个表达式相减即可得到关于球心坐标的n个方...
  • u010576722
  • u010576722
  • 2016年11月01日 20:51
  • 90

BZOJ-1013 球形空间产生器sphere 高斯消元+数论推公式

1013: [JSOI2008]球形空间产生器sphere Time Limit: 1 Sec Memory Limit: 162 MB Submit: 3662 Solved: 1910 ...
  • DaD3zZ
  • DaD3zZ
  • 2016年02月19日 20:18
  • 276

BZOJ 1013 [JSOI2008]球形空间产生器sphere

╮(╯▽╰)╭,小球球啊,你的心究竟在哪里
  • neighthorn
  • neighthorn
  • 2016年05月14日 19:00
  • 147

BZOJ 1013 [JSOI2008] 球形空间产生器sphere

高斯消元(解线性方程组)
  • SenyeLicone
  • SenyeLicone
  • 2017年03月09日 17:40
  • 202

BZOJ 1013 [JSOI2008]球形空间产生器 - 高斯消元

列n个距离公式,消去二次方项,然后大模拟列个方程,gauss消元解一下即可。 我原来背的gauss消元的板子竟然会爆double。。。于是找的hzwer学长的板子抄了抄。。。 #i...
  • x_1023
  • x_1023
  • 2017年09月18日 09:49
  • 170

【bzoj 1013】球形空间产生器sphere

传送门~解题思路用距离公式以后式子里有r2r^2,所以相邻两个式子相减消去r2r^2,之后高斯消元。 代码#include #include #include #include #include #...
  • jmsyzldx
  • jmsyzldx
  • 2018年01月19日 10:18
  • 46

BZOJ 1013: [JSOI2008]球形空间产生器sphere

搞死校园 高斯消元。。 我一开始还以为是什么神奇的东西。。 结果就是解方程。。 搞死高斯消元就是类似于先乘除,再加减消元。 先从消x1,再x2,x3,……。 因为这道题是求n维点的中心,即...
  • bababaab
  • bababaab
  • 2016年02月02日 21:09
  • 303

lydsy1013: [JSOI2008]球形空间产生器sphere 高斯消元

做法:把圆心坐标设成 x1,x2,x3.... ,有若干个点 其中两个点坐标为a1,a2, a3.... 和b1,b2,b3. 可以写出方程 sqrt((a1-x1)^2+(a2-x2)^2+...
  • u013532224
  • u013532224
  • 2015年07月13日 14:48
  • 588
内容举报
返回顶部
收藏助手
不良信息举报
您举报文章:【BZOJ】1013 球形空间产生器
举报原因:
原因补充:

(最多只允许输入30个字)