【BZOJ】1013 球形空间产生器

原创 2015年07月07日 00:24:29
【解析】代数变形+高斯消元

[分析]
根据题目下面的提示,设x[i][j]表示第i个点在第j维的坐标,r[j]为圆心在第j维的坐标
可以知道:
dis=根号(∑(x[i][j]-r[j])^2)。
由于平方的非负性,所以可以推出 dis^2=∑(x[i][j]-r[j])^2。
根据平方和公式,(x[i][j]-r[j])^2=r[j]^2+x[i][j]^2-2*x[i][j]*r[j]。
∴dis^2=∑r[j]^2+∑x[i][j]^2-∑2*x[i][j]*r[j]。
根据n+1个坐标,可以用i和i+1两个坐标列出等量条件:
∑r[j]^2+∑x[i][j]^2-∑2*x[i][j]*r[j]=∑r[j]^2+∑x[i+1][j]^2-∑2*x[i+1][j]*r[j]。
把∑r[j]^2消去,参数放在右边,未知数放在左边。
化简易得:
∑(x[i+1][j]-x[i][j])*r[j]=(∑x[i+1][j]^2-∑x[i][j]^2)/2。
现在变成了一元n次的方程组,可以直接使用高斯消元求解。
对于∑x[i+1][j]^2,可以全部提前预处理出来,这样会快一点。

[代码]

由于准备要睡觉了没心机检查,结果又一次AC,手感真好...

#include <cstdio>
#include <cstring>
#include <cstdlib>
#include <cmath>
using namespace std;

const int N=15;
const double eps=1e-5;

int n; double x[N][N];
double a[N][N],sum[N],res[N];

void init(void)
{
	scanf("%d",&n);
	for (int i=1;i<=n+1;i++)
		for (int j=1;j<=n;j++)
			scanf("%lf",&x[i][j]);
	
	for (int i=1;i<=n+1;i++)
		for (int j=1;j<=n;j++)
			sum[i]+=x[i][j]*x[i][j];
	for (int i=1;i<=n;i++)
	{
		for (int j=1;j<=n;j++)
			a[i][j]=x[i+1][j]-x[i][j];
		a[i][n+1]=(sum[i+1]-sum[i])/2;
	}
}

inline int cmp(double i,double j)
{
	if (fabs(i-j)<eps) return 0;
	return i<j?-1:1;
}

inline void swap(int i,int j)
{
	for (int k=1;k<=n+1;k++) a[i][k]+=a[j][k];
	for (int k=1;k<=n+1;k++) a[j][k]=a[i][k]-a[j][k];
	for (int k=1;k<=n+1;k++) a[i][k]-=a[j][k];
}

void gauss(void)
{
	double r;
	for (int i=1;i<=n;i++)
	{
		for (int j=i+1;j<=n;j++)
			if (!cmp(a[i][i],0)||cmp(abs(a[i][i]),abs(a[j][i]))>0) swap(i,j);
		for (int j=i+1;j<=n;j++)
			if (cmp(a[i][j],0))
			{
				r=a[j][i]/a[i][i];
				for (int k=i;k<=n+1;k++) a[j][k]-=a[i][k]*r;
			}
	}
	for (int i=n;i;i--)
	{
		for (int j=i+1;j<=n;j++) a[i][n+1]-=a[i][j]*res[j];
		res[i]=a[i][n+1]/a[i][i];
	}
	
	for (int i=1;i<n;i++) printf("%0.3lf ",res[i]);
	printf("%0.3lf\n",res[n]);
}

int main(void)
{
	init();
	gauss();	
	
	return 0;
}

【小结】
①理清思路再开始写,理清思路要把自己不知道怎么写的问题先想好。
②为了保证自己算法的正确性(虽然一般都是正确的),要套几个小例子去验证。

版权声明:本文为博主原创文章,未经博主允许不得转载。

[BZOJ1013][JSOI2008]球形空间产生器sphere(高斯消元)

ORZ hxy的手残代码竟然0MS AC!

【BZOJ】【P1013】【JSOI2008】【球形空间产生器sphere】【题解】【高斯消元】

传送门: http://www.lydsy.com/JudgeOnline/problem.php?id=1013 q

BZOJ 1013: [JSOI2008]球形空间产生器sphere

Description 有一个球形空间产生器能够在n维空间中产生一个坚硬的球体。现在,你被困在了这个n维球体中,你只知道球面上n+1个点的坐标,你需要以最快的速度确定这个n维球体的球心坐标,以便...

[BZOJ 1013] JSOI 2008 球形空间产生器sphere · 高斯消元

预处理以后就是高斯消元模板了,而且还只有唯一解。。。n=2时,设球心是(x,y),则对于任意两个球面上的点(a,b) (c,d),有,化简以后把每两个相邻的点做成一条方程,n+1个点就构成了n个方程。...
  • ycdfhhc
  • ycdfhhc
  • 2015年07月06日 19:32
  • 543

[高斯消元]BZOJ 1013 [JSOI2008]——球形空间产生器sphere

1013: [JSOI2008]球形空间产生器sphere 题目描述   有一个球形空间产生器能够在n维空间中产生一个坚硬的球体。现在,你被困在了这个n维球体中,你只知道球面上n+1个点的坐标...
  • CHN_JZ
  • CHN_JZ
  • 2017年07月14日 21:44
  • 493

[BZOJ1013][JSOI2008][高斯消元]球形空间产生器sphere

[Problem Description] 有一个球形空间产生器能够在n维空间中产生一个坚硬的球体。现在,你被困在了这个n维球体中,你只知道球面上n+1个点的坐标,你需要以最快的速度确定这个n维球体...

BZOJ 1013-球形空间产生器sphere(高斯消元)

1013: [JSOI2008]球形空间产生器sphere Time Limit: 1 Sec  Memory Limit: 162 MB Submit: 5616  Solved: 2944 ...

【bzoj 1013】 [JSOI2008] 球形空间产生器sphere(高斯消元)

横一支玉笛唇旁,叹秋月飞花散作烟

【JSOI2008】bzoj1013 球形空间产生器

高斯消元
  • sdfzyhx
  • sdfzyhx
  • 2017年03月08日 20:49
  • 99

【BZOJ 1013】 [JSOI2008]球形空间产生器sphere

高斯消元模板题~ 有较详细题解~
内容举报
返回顶部
收藏助手
不良信息举报
您举报文章:【BZOJ】1013 球形空间产生器
举报原因:
原因补充:

(最多只允许输入30个字)