AOJ 2164

原创 2015年07月07日 11:31:21

题目描述:

n个人,k个相同的人不能连续坐一起,n个人只能是A或者B.旋转不算数.求方案数.

题解:

首先旋转我们可以用波利亚计数.之后变成了:安排x个人,x人内部不超过k,而且x的头和尾如果一样,之和也不能超过k.对于这种,其实是n^2的空间的dp.强制A结尾,并且记录A结尾的A的个数.dp_a[i][j],A开头,i为长度,结尾j个A.dp_b[i][j],B开头,i为长度,结尾j个B.先dp出来这个,然后再导出来dp.注意很多细节,比如dp_a中的AAAA的情况.

重点:

1.波利亚计数
2.头尾也需要考虑的方法.

代码:

#include <iostream>
#include <cstdio>
#include <cstring>
#include <string>
#include <cmath>
#include <ctype.h>
#include <limits.h>
#include <cstdlib>
#include <algorithm>
#include <vector>
#include <queue>
#include <map>
#include <stack>
#include <set>
#include <bitset>
#define CLR(a) memset(a, 0, sizeof(a))
#define REP(i, a, b) for(ll i = a;i < b;i++)
#define REP_D(i, a, b) for(ll i = a;i <= b;i++)

typedef long long ll;

using namespace std;

const ll maxn = 1000 + 10;
const ll MOD = 1000003;
ll dp[maxn], dp_a[maxn][maxn], dp_b[maxn][maxn];
ll sum_a[maxn][maxn], sum_b[maxn][maxn];
ll n, k;

ll pow_mod(ll x, ll n)
{
    if(n==0)
    {
        ll t = 1;
        return t;
    }
    x %= MOD;
    ll xx = (x*x)%MOD;
    ll nn = n/2;
    ll res = pow_mod(xx, nn);
    if(n%2==1)
    {
        res = (res*x)%MOD;
    }
    return res;
}
ll gcd(ll x, ll y)
{
    if(y==0)
    {
        return x;
    }
    return gcd(y, x%y);
}

void getDp()
{
    CLR(dp_a);
    CLR(dp_b);
    CLR(sum_a);
    CLR(sum_b);

    dp_a[1][1] = 1;
    sum_a[1][1] = 1;

    for(ll i = 2; i <= n; i++)
    {
        if(i<=k)
        {
            dp_a[i][i] = 1;
        }
        ll key = min(i-2, k);
        for(ll j = 1; j<=key; j++)
        {
            ll limit = i - k - 1;
            limit = max(0LL, limit);

            dp_a[i][j] = ((sum_b[i-1][j] - sum_b[limit][j])%MOD + MOD)%MOD;

            //dp_b[i][j] = ((sum_a[i-1][j] - sum_a[limit][j])%MOD + MOD)%MOD;
            //printf("i is %lld j is %lld dp_b is %lld\n", i, j, dp_b[i][j]);
        }
        key = min(i-1, k);
        for(ll j = 1; j<=key; j++)
        {
            ll limit = i - k - 1;
            limit = max(0LL, limit);
            dp_b[i][j] = ((sum_a[i-1][j] - sum_a[limit][j])%MOD + MOD)%MOD;
            //printf("i is %lld j is %lld dp_b is %lld\n", i, j, dp_b[i][j]);
        }
        for(ll j = 1; j<=i; j++)
        {
            sum_a[i][j] = (sum_a[i-1][j] + dp_a[i][j])%MOD;
            sum_b[i][j] = (sum_b[i-1][j] + dp_b[i][j])%MOD;
        }
    }
    CLR(sum_b);
    for(ll i = 2;i <= n;i++)
    {
        //sum_b[i][0] = 0;
        for(ll j = 1;j <= n;j++)
        {
            sum_b[i][j] = (sum_b[i][j-1]+dp_b[i][j])%MOD;
        }
    }
    CLR(dp);
    for(ll i = 1; i <= n; i++)
    {
        for(ll j= 1;j<=min(k, i-1);j++)
            dp[i] = (dp[i]+dp_b[i][j])%MOD;
//        if(i<=k)
//        {
//            dp[i] = (dp[i]+1)%MOD;
//        }
        for(ll j = 1; j <= min(k,i - 2); j++)
        {
            ll lft = k - j;
            lft = min(lft, n);
            dp[i] = (dp[i]+sum_b[i-j][lft])%MOD;
        }
//        if(i <= k)
//        {
//            dp[i] = (dp[i]+1)%MOD;
//        }
        //printf(" i is %lld   %lld\n", i, dp[i]);
        dp[i] = (2*dp[i])%MOD;

    }
}

void solve()
{
    int all = 0;
    if(k >= n)
    {
        all = 2;
        //k = n - 1;
    }
    getDp();
    ll ans = dp[n];
    for(ll i = 1;i<n;i++)
    {
        ll t = gcd(i, n);
        ans = (ans + dp[t])%MOD;
    }
    ans = (ans*pow_mod(n, MOD-2))%MOD;

        ans = (ans + all)%MOD;

    printf("%lld\n", ans);
}

int main()
{
    //freopen("8Hin.txt", "r", stdin);
    //freopen("8Hout.txt", "w", stdout);
    while(scanf("%lld%lld", &n, &k) != EOF)
    {
        if(!n && !k)
            break;
        solve();
    }
    return 0;
}
版权声明:本文为博主原创文章,未经博主允许不得转载。

相关文章推荐

【弱校胡策】2016.4.14 (bzoj2164)最短路+状压DP+矩阵乘法+高斯消元+树链剖分+线段树+背包DP

cyyz&qhyz&lwyz&gryz弱校胡策 命题人:cyyz ws_fqkT3暴力写挫了 50+10+0滚粗辣!奇妙的约会(appointment.cpp/c/pas)【问题描述】DQS和sxb在...

杭电acm-2164 Rock, Paper, or Scissors?

杭电acm-2164 Rock, Paper, or Scissors? Problem Description Rock, Paper, Scissors is a two player g...

poj 2164 (卷包裹算法)

取了个数组名_end[]  ,Re了一天, 都要哭了。。。。。_end[]  不能用。    view cod#include #include #include #include #include...

Sdut 2164 Binomial Coeffcients (组合数学) (山东省ACM第二届省赛 D 题)

组合数学 Sdut 2164

Foj 2164 Jason's problem

题目链接:

2164: 采矿|树链剖分|DP

DP比较显然,但是直接DP会Tle,这时需要树链剖分用线段树维护dp值同时维护链上的和子树的dp值#include #include #include #include #include #inclu...

AOJ 351 rmq或 基础线段树 求解

题目链接:AOJ 351 RMQ: #include #include #include #include #include using namespace...
  • ADjky
  • ADjky
  • 2016-08-22 19:51
  • 139

AOJ 2450 Do use segment tree (树链剖分 + 线段树区间合并)

题意: 一颗N<=2×105的树,Q<=105,两种操作一颗N<=2×10^5的树, Q v路径上的点权变为c1\ u\ v\ c, 将u->v路径上的点权变为c 2 u v c,查询u−>...
  • lwt36
  • lwt36
  • 2015-10-10 03:20
  • 334

AOJ 0121: Seven Puzzle (BFS DP STL 逆向推理)

http://judge.u-aizu.ac.jp/onlinejudge/description.jsp?id=0121 题意:7数码问题。在2×4的棋盘上,摆有7个棋子,每个棋子上标有1...

Aoj 0558

H * W的地图上有N个奶酪工厂,分别生产硬度为1-N的奶酪。老鼠准备从老鼠洞出发吃遍每一个工厂的奶酪。老鼠有一个体力值,初始时为1,每吃一个工厂的奶酪体力值增加1(每个工厂只能吃一次),且老鼠只能吃...
内容举报
返回顶部
收藏助手
不良信息举报
您举报文章:深度学习:神经网络中的前向传播和反向传播算法推导
举报原因:
原因补充:

(最多只允许输入30个字)