poj 1811

原创 2015年07月08日 21:26:46

题目描述:

大质数(特别大)的判定质数和分解质数.

题解:

Miller_Rabin 算法进行素数测试 和 pollard_rho 算法进行质因素分解

重点:

代码:

#include <iostream>
#include <cstdio>
#include <cstring>
#include <string>
#include <cmath>
#include <ctype.h>
#include <limits.h>
#include <cstdlib>
#include <algorithm>
#include <vector>
#include <queue>
#include <map>
#include <stack>
#include <set>
#include <bitset>
#include <time.h>
#define CLR(a) memset(a, 0, sizeof(a))
#define REP(i, a, b) for(ll i = a;i < b;i++)
#define REP_D(i, a, b) for(ll i = a;i <= b;i++)

typedef long long ll;

using namespace std;

ll n;

const ll S = 8;
ll mul_mod(ll a, ll b, ll c)
{
    a %= c;
    b %= c;
    ll res = 0;
    ll tmp = a;
    while(b)
    {
        if(b&1)
        {
            res = res + tmp;
            if(res >= c)
                res -= c;
        }
        tmp <<= 1;
        if(tmp >= c)
            tmp -= c;
        b >>= 1;
    }
    return res;
}

ll pow_mod(ll x, ll n, ll c)
{
    ll res = 1;
    ll tmp = x%c;
    while(n)
    {
        if(n&1)
        {
            res = mul_mod(res, tmp, c);
        }
        n >>= 1;
        tmp = mul_mod(tmp, tmp, c);
    }
    return res;
}

ll check(ll a, ll n, ll x, ll t)
{
    ll res = pow_mod(a, x, n);
    ll last = res;
    for(ll i=1; i<= t; i++)
    {
        res = mul_mod(res, res, n);
        if(res==1&&(last != 1 && last != n-1))
            return 1;
        last = res;
    }
    if(res!=1)
        return 1;
    return 0;
}

ll miller_rabin(ll n)
{
    if(n < 2)
        return 0;
    if(n==2)
        return 1;
    if((n&1)==0)
        return 0;
    ll x=n-1;
    ll t = 0;
    while((x&1)==0)
    {
        t++;
        x>>=1;
    }
    srand(time(NULL));
    for(ll i=1; i<=S; i++)
    {
        ll a = rand()%(n-1)+1;
        if(check(a, n, x, t))
        {
            return 0;
        }
    }
    return 1;
}


ll gcd(ll a, ll b)
{
    if(a < 0)
        a= -a;
    if(b < 0)
        b = -b;
    //a = abs(a);
    //b = abs(b);
    if(b==0)
        return a;
    return gcd(b, a%b);
}

long long pollard_rho(long long x,long long c)
{
    long long i = 1, k = 2;
    srand(time(NULL));
    long long x0 = rand()%(x-1) + 1;
    long long y = x0;
    while(1)
    {
        i ++;
        x0 = (mul_mod(x0,x0,x) + c)%x;
        long long d = gcd(y - x0,x);
        if( d != 1 && d != x)return d;
        if(y == x0)return x;
        if(i == k)
        {
            y = x0;
            k += k;
        }
    }
}

ll factor[110], tot;
void findfac(ll n, ll k)
{
    if(n==1)
        return;
    if(miller_rabin(n))
    {
        factor[tot++]= n;
        return;
    }
    ll p = n;
    ll c= k;
    while(p >= n)
    {
        p = pollard_rho(p, c);
        c--;
    }
    findfac(p, k);
    findfac(n/p, k);
}

void solve()
{
    if(miller_rabin(n))
    {
        printf("Prime\n");
        return;
    }
    else
    {
        tot= 0;
        findfac(n, 107);
    }
    sort(factor, factor + tot);
    printf("%I64d\n", factor[0]);
}


int main()
{
  //  freopen("2Bin.txt", "r", stdin);
    //freopen("3Bout.txt", "w", stdout);
    ll t;
    scanf("%I64d", &t);
    while(t--)
    {
        scanf("%I64d", &n);
        solve();
    }
    return 0;
}
版权声明:本文为博主原创文章,未经博主允许不得转载。 举报

相关文章推荐

poj 1811解题报告——关于大数的素数鉴定与质因数分解

题目来源:http://poj.org/problem?id=1811 题目描述:题意十分简单,不多说。。 题目分析: 这是一道数论的经典题! 首先介绍两个传说中的随机算法。。 Millier-Ra...

POJ 1811 Prime Test (大素数判断和素因子分解)

给你一个数N(2 <= N < 2^54) ,若N是素数 , 输出Prime, 否则输出最小的素因子。由于N很大,所以只能先用Miller_Rabin算法进行素数判断,然后用Pollard_rho分解...

我是如何成为一名python大咖的?

人生苦短,都说必须python,那么我分享下我是如何从小白成为Python资深开发者的吧。2014年我大学刚毕业..

poj 1811 Prime Test_Pollard_rho算法模板

Pollard_rho算法模板

poj 1811 Prime Test(大素数判定)

Prime Test Time Limit: 6000MS   Memory Limit: 65536K Total Submissions: 28142   Ac...

poj 1811(大素数模版 miller_rabbin素数判定+pollard_rho分解)

点击打开链接 给定一个64位整数,问是否为质数,如果不是,则输出其最小因子。 miller_rabbin素数判定。若不是则pollard_rho分解。pollard_rho的作用是,参数传...

SPOJ 1811-LCS POJ 2774

SAM表示真的很难艹 SPOJ LCS 题目链接 推荐学习的博客博客地址 题意:求两个字符串的最长公共子串 解法:时间限制及其的严格,SAM可以在线性时间内解决 性...

POJ-1811-Prime Test

ACM模版题目链接POJ 1811 Prime Test题解随机素数测试和大数分解两个核心算法。随机素数测试算法需要进行8~10次测试的样子,可以尽可能的保证结果的正确性。代码#include usi...
  • f_zyj
  • f_zyj
  • 2016-07-02 22:19
  • 201

poj 1811 随机素数和大数分解(模板)

Sample Input 2 5 10 Sample Output Prime 2 模板学习: 判断是否是素数,数据很大,所以用miller,不是的话再用pollard rho分解 ...

poj 1811 Prime Test

题意:大整数判断素数,非素则求最小质因子。 Pollard-Rho和Miller-Rabin各种纠结,自己的模版各种TLE,只好去copy别人的。Orz #include #include #in...

POJ 1811 Prime Test(大素数判断+大合数素因子分解)

题意:判断n(n 思路:这题肯定不能用普通的枚举来做, 对于判断大素数,可以用Miller_Rabin随机算法进行素性检验,而分解素因数可以使用Miller_Rabin搭配Pollard_rho算...
返回顶部
收藏助手
不良信息举报
您举报文章:深度学习:神经网络中的前向传播和反向传播算法推导
举报原因:
原因补充:

(最多只允许输入30个字)