poj 2689

原创 2015年07月08日 21:29:33

题目描述:

一个区间,[L,U], U-L<1e6. 并且U>L. U和L int范围内.问在L到U内相邻最近的两个相邻质数和相邻最远的两个相邻质数.

题解:

区间长度小于1e6,然后合数一定有小于2^16的质因子. 先搞出来2^16的质因子然后乘筛出合数.

重点:

代码:

#include <iostream>
#include <cstdio>
#include <cstring>
#include <string>
#include <cmath>
#include <ctype.h>
#include <limits.h>
#include <cstdlib>
#include <algorithm>
#include <vector>
#include <queue>
#include <map>
#include <stack>
#include <set>
#include <bitset>
#define CLR(a) memset(a, 0, sizeof(a))
#define REP(i, a, b) for(ll i = a;i < b;i++)
#define REP_D(i, a, b) for(ll i = a;i <= b;i++)

typedef long long ll;

using namespace std;

const ll maxn = 1e6+100;
const ll INF = 1e9;
ll vis[maxn];
ll l, r;
ll pos;
ll pn, p[maxn];

void getP()
{
    pn=0;
    CLR(vis);
    ll key = 1e5;
    REP_D(i, 2, key)
    {
        if(vis[i]==0)
        {
            p[pn++]=i;
        }
        for(ll j=0;j<pn&&p[j]*i<=key;j++)
        {
            ll tmp = i*p[j];
            vis[tmp] = 1;
            if(i%p[j]==0)
            {
                break;
            }
        }
    }
}

void solve()
{
    pos = l;
    CLR(vis);
    REP(i, 0, pn)
    {
        ll t = p[i];
        ll a = (l+t-1)/t;
        a = max(2LL, a);
        ll b = (r)/t;
        for(ll j=a;j<=b;j++)
        {
            ll m = j*t - pos;
            vis[m]=1;
        }
    }
    ll last=0, ans_i=0, ans_j=0, ans_l=INF;
    for(ll i=l-pos;i<=r-pos;i++)
    {
        if(vis[i]==0)
        {
            if(last!=0)
            {
                if(i+pos-last < ans_l)
                {
                    ans_i = last;
                    ans_j = i+pos;
                    ans_l = ans_j -ans_i;
                }
            }
            last = i+pos;
        }
    }
    if(ans_l==INF)
    {
        printf("There are no adjacent primes.\n");
        return;
    }
    else
    {
        printf("%I64d,%I64d are closest, ", ans_i, ans_j);
    }
    last=0, ans_i=0, ans_j=0, ans_l=0;
    for(ll i=l-pos;i<=r-pos;i++)
    {
        if(vis[i]==0)
        {
            if(last!=0)
            {
                if(i+pos-last > ans_l)
                {
                    ans_i = last;
                    ans_j = i+pos;
                    ans_l = ans_j -ans_i;
                }
            }
            last = i+pos;
        }
    }
    printf("%I64d,%I64d are most distant.\n", ans_i, ans_j);
}

int main()
{
   // freopen("1Ain.txt", "r", stdin);
    //freopen("1Aout.txt", "w", stdout);
    getP();
    while(scanf("%I64d%I64d", &l, &r) != EOF)
    {
        if(l==1)
        {
            l = 2;
        }
        solve();
    }
    return 0;
}
版权声明:本文为博主原创文章,未经博主允许不得转载。

相关文章推荐

poj2689(二次筛选)

地址:http://poj.org/problem?id=2689 Prime Distance Time Limit: 1000MS   Memory Limit: 65536K Tot...

poj 2689(区间素数筛选)

由于给出的L和U太大,直接打表是不可能了。但U-L 代码如下: #include #include #include #include #include #include #inclu...

POJ2689

题目连接:http://poj.org/problem?id=2689 转载请注明出处:http://hi.baidu.com/pub/show/createtext 题意:求某个区间内素数最近距离和...

poj 2689Prime Distance

题目链接:点击打开链接; 题意:在l和u之间找到相邻的素数差最大和最小的打印出来。没有输出There are no adjacent primes. 分析:本题数据很大,所以int不能存下,所以用...

POJ-2689 Prime Distance(两次素数筛+偏移处理)

题目链接:点击打开链接 题意:求区间[a,b]内距离最小的两个素数和距离最大的两个素数。若存在就输出它们的信息,不存在输出"There are no adjacent primes." 分析:由于a和...

POJ 2689-Prime Distance(区间素数)

Prime Distance Time Limit: 1000MS   Memory Limit: 65536K Total Submissions: 15901 ...

poj2689筛法应用

题意:输入两个数字L,U,0 完成这道题需要细心,读完题后我们可以找到解决问题的思路:由于”L and U (1<=L< U<=2,147,483,647)“,开一个2147483647的数组显然不...

POJ 2689 Prime Distance(筛选两次素数)

题意:给定两个数L,R(1≤L<R≤2 147 483 647),在[L,R]内找出相邻素数C1,C2使其距离最小,找出相邻素数C3,C4使其距离最大。若距离相同,选最初的一组。(R-L 分析:L和...

Prime Distance poj 2689 区间内的素数打表模板

Prime Distance Time Limit: 1000MS   Memory Limit: 65536K Total Submissions: 10977  ...

POJ 2689 Prime Distance [筛法选取素数]【数论】

题目链接:http://poj.org/problem?id=2689 ————————-. Prime Distance Time Limit: 1000MS Memory Limi...
内容举报
返回顶部
收藏助手
不良信息举报
您举报文章:深度学习:神经网络中的前向传播和反向传播算法推导
举报原因:
原因补充:

(最多只允许输入30个字)