cf330 594D — REQ

原创 2015年11月20日 21:39:40

题目描述:

题解:

其实是一道很躶的题目。关键是求出L到R之间的质数的出现情况。
想到一种莫队的算法,但是可能会超时。
因此有下面一种很实用的方法。对于离线查询,我们相当于可以固定左端点,那么其实对于质数p,就是从l之后的第一个出现p的位置是关键位置。我们用线段树来区间修改。最开始预处理所有的结果为正确的。然后随着l的平移,对于删掉的左边的数,它的质数应从l到下一个l-1之间都要去除这个质数的影响。搞一搞就行了

重点:

关键是离线相当于可以固定l。 然后我们对于固定的l来说,我们一个p只需要一个关键的位置,就可以描述。
学习了金爷两个姿势。
1。搞一个数的质数。
2。vec【i】。back 和 front。
3。另外学一下树状数组把。。。

代码:

#include <iostream>
#include <cstdio>
#include <cstring>
#include <cmath>
#include <vector>
#include <algorithm>

#define lrt (rt<<1)
#define rrt ((rt<<1)|1)
#define mid ((l+r)/2)

using namespace std;

typedef long long ll;

const int maxn  = 1e6 + 100;
const int MAXNODE = maxn;
const int M = 1e9 + 7.1;
const int MAXVAL = 1e6 + 0.5;

struct node
{
    int l, r, id;
    node(int _l = 0, int _r = 0, int _id = 0)
    {
        l = _l;
        r = _r;
        id = _id;
    }
};

int n, a[maxn], mul[maxn], tree[maxn], cur[maxn], p[maxn], pn, vis[maxn], qn, rev[maxn], ans[maxn], bo[maxn];
node q[maxn];
vector<int> vec[maxn];
vector<int> num[maxn];

int mult(int a, int b)
{
    int c = (ll)a * (ll)b % M;
    return c;
}

int pow_mod(int x, int n)
{
    int res = 1;
    int tmp = x % M;
    while(n)
    {
        if(n&1)
            res = mult(res, tmp);
        tmp = mult(tmp, tmp);
        n >>= 1;
    }
    return res;
}
int getRev(int x)
{
    return pow_mod(x, M - 2);
}

void prime()
{
    memset(vis, 0, sizeof(vis));
    pn = 0;
    for(int i = 2; i <= MAXVAL; i++)
    {
        if(vis[i] == 0)
        {
            p[pn] = i;
            pn++;
            vis[i] = 1;
            bo[i] = i;
        }
        for(int j = 0; j < pn && i * p[j] <= MAXVAL; j++)
        {
            bo[i * p[j]] = p[j];
            vis[i * p[j]] = 1;
            if(i % p[j] == 0)
                break;
        }
    }
}

void pushDown(int rt)
{
    if(tree[rt] == 1)
        return;
    tree[lrt] = mult(tree[lrt], tree[rt]);
    tree[rrt] = mult(tree[rrt], tree[rt]);
    tree[rt] = 1;
}

void change(int L, int R, int key, int rt, int l, int r)
{
    if(L <= l && R >= r)
    {
        tree[rt] = mult(tree[rt], key);
        return;
    }
    pushDown(rt);
    if(L <= mid)
        change(L, R, key, lrt, l, mid);
    if(R >= mid + 1)
        change(L, R, key, rrt, mid + 1, r);
}
int query(int pos, int rt, int l, int r)
{
    if(r == l && r == pos)
    {
        return tree[rt];
    }
    pushDown(rt);
    if(pos <= mid)
        return query(pos, lrt, l, mid);
    else
        return query(pos, rrt, mid + 1, r);
}
void dfs_init(int rt, int l, int r)
{
    if(l == r)
    {
        tree[rt] = 1;
        return;
    }
    tree[rt] = 1;
    dfs_init(lrt, l, mid);
    dfs_init(rrt, mid + 1, r);
}

void solve()
{
    for(int i = 0; i <= MAXVAL; i++)
        vec[i].clear();
    mul[0] = 1;
    for(int i = 1; i <= n; i++)
    {
        mul[i] = mult(mul[i-1], a[i]);
        num[i].clear();
        int x = a[i];
        while(x != 1)
        {
            int t = bo[x];
            vec[t].push_back(i);
            num[i].push_back(t);
            while(x % t == 0)
                x /= t;
        }
    }
    dfs_init(1, 1, n);
    for(int i = 2; i <= MAXVAL; i++)
    {
        if(vec[i].size() >= 1)
            change(vec[i][0], n, (ll)(i-1) * (ll)rev[i] % M, 1, 1, n);
        cur[i] = 0;
    }
    int tl = 1;
    for(int i = 0; i < qn; i++)
    {
        while(tl < q[i].l)
        {
            for(int j = 0; j < num[tl].size(); j++)
            {
                int x = num[tl][j], tr;
                if(cur[x] + 1 >= vec[x].size())
                {
                    cur[x]++;
                    tr = n+1;
                }
                else
                {
                    tr = vec[x][cur[x] + 1];
                    cur[x]++;
                }
                change(tl + 1, tr - 1, (ll)x * (ll)rev[x-1] % M, 1, 1, n);
            }
            tl++;
        }
        int res = (ll)mul[q[i].r] * (ll)getRev(mul[q[i].l - 1]) % M * (ll)query(q[i].r, 1, 1, n) % M;
        ans[q[i].id] = res;
    }
    for(int i = 0; i < qn; i++)
    {
        printf("%d\n", ans[i]);
    }
}
bool cmp(node a, node b)
{
    return a.l < b.l;
}

int main()
{
    freopen("Din.txt", "r", stdin);
    prime();
    for(int i = 1; i <= MAXVAL; i++)
        rev[i] = getRev(i);
    while(scanf("%d", &n) != EOF)
    {
        for(int i = 1; i <= n; i++)
            scanf("%d", &a[i]);
        scanf("%d", &qn);
        for(int i = 0; i < qn; i++)
        {
            scanf("%d%d", &q[i].l, &q[i].r);
            q[i].id = i;
        }
        sort(q, q + qn, cmp);
        solve();
    }
    return 0;
}
版权声明:本文为博主原创文章,未经博主允许不得转载。

相关文章推荐

CodeForces 594D REQ(树状数组)

分析:第一反应是用莫队来写,这样每次查询的复杂度是o(n∗n−−√)o(n*\sqrt{n}),设MM是a[i]a[i]中最大的数,那么每一次修改的复杂度是o(logM)o(logM),那么总的复杂度...

CodeForces 594D REQ(树状数组+欧拉函数)

题意:给出一个序列,有m个询问,每次询问要求回答一个区间内所有数的乘积的欧拉函数。 思路:这道题看上去像是一个莫队,但是莫队的时间复杂度为O(n∗sqrt(n)∗k)O(n*sqrt(n)*k),其...

codeforces 594D题解

D. REQtime limit per test3 seconds memory limit per test256 megabytes input standard input output...

CF330 C. Purification 认真想后就成水题了

C. Purification time limit per test 1 second memory limit per test 256 megabytes input standar...

CF330 DBiridian Forest BFS宽度搜索

B. Biridian Forest time limit per test 2 seconds memory limit per test 256 megabytes input sta...

CF 330B Road Construction 构造路径 水题

B. Road Construction time limit per test 2 seconds memory limit per test 256 megabytes input s...

电力工程设计一次回路—(330~500KV超高压配电装置)一个半断路器接线方式

摘自doc巴巴具体【一个半断路器接线方式】 为了提高这些重要厂、站的运行可靠性,在330KV及以上的电压等级系统中,3/2断路器接线已经得到广泛采用。定义每一回路经一台断路器1QF或3QF接至一组母线...

【Codeforces Round 330 (Div 2)D】【计算几何 二分答案】Max and Bike 最小骑车距离使得圆上传感器很坐标位移为dis

D. Max and Bike time limit per test 2 seconds memory limit per test 256 megabytes i...

一个电路分析(设计经典的单片机采样电阻 C8051F330内部具有10位高精度的A/D转换器)

一个电路分析(转)   即将要分析的电路如下,这个电路本人觉得设计的很经典。这个电路主要完成的任务就是监测流经Q1和采样电阻R6中的电流。单片机C8051F330对电流的...
内容举报
返回顶部
收藏助手
不良信息举报
您举报文章:深度学习:神经网络中的前向传播和反向传播算法推导
举报原因:
原因补充:

(最多只允许输入30个字)