FFT

原创 2016年06月01日 08:36:09

FFT新手请参考下面链接

http://www.gatevin.moe/acm/fft算法学习笔记/

#include<cstdio>
#include<cstring>
#include<iostream>
#include<algorithm>
#include<cmath>
using namespace std;
const int maxn=220005;
const double eps(1e-8);
typedef long long LL;
const double PI = acos(-1.0);

struct Complex
{
    double real, image;
    Complex(double _real, double _image)
    {
        real = _real;
        image = _image;
    }
    Complex(){}
};

Complex operator + (const Complex &c1, const Complex &c2)
{
    return Complex(c1.real + c2.real, c1.image + c2.image);
}

Complex operator - (const Complex &c1, const Complex &c2)
{
    return Complex(c1.real - c2.real, c1.image - c2.image);
}

Complex operator * (const Complex &c1, const Complex &c2)
{
    return Complex(c1.real*c2.real - c1.image*c2.image, c1.real*c2.image + c1.image*c2.real);
}

int rev(int id, int len)
{
    int ret = 0;
    for(int i = 0; (1 << i) < len; i++)
    {
        ret <<= 1;
        if(id & (1 << i)) ret |= 1;
    }
    return ret;
}

Complex A[maxn<<1];
void FFT(Complex* a, int len, int DFT)//对a进行DFT或者逆DFT, 结果存在a当中,len必须是2的幂而且len大于多项式最高次数
{
    for(int i = 0; i < len; i++)
        A[rev(i, len)] = a[i];
    for(int s = 1; (1 << s) <= len; s++)
    {
        int m = (1 << s);
        Complex wm = Complex(cos(DFT*2*PI/m), sin(DFT*2*PI/m));
        for(int k = 0; k < len; k += m)
        {
            Complex w = Complex(1, 0);
            for(int j = 0; j < (m >> 1); j++)
            {
                Complex t = w*A[k + j + (m >> 1)];
                Complex u = A[k + j];
                A[k + j] = u + t;
                A[k + j + (m >> 1)] = u - t;
                w = w*wm;
            }
        }
    }
    if(DFT == -1) for(int i = 0; i < len; i++) A[i].real /= len, A[i].image /= len;
    for(int i = 0; i < len; i++) a[i] = A[i];
    return;
}
Complex a[maxn<<1];
int san[maxn];
int num[maxn<<1];
LL xishu[maxn<<1];
int main()
{
    int t,n;
    cin>>t;
    while(t--){
        scanf("%d",&n);
        int len=1;
        int s=0;
        for(int i=1;i<=n;i++){
            scanf("%d",&san[i]);
            s=max(s,san[i]);
        }
        while(len<=s){
            len<<=1;
        }
        len<<=1;
        sort(san+1,san+1+n);
        for(int i=0;i<len;i++){
            a[i]=Complex(0,0);
            num[i]=0;
        }
        for(int i=1;i<=n;i++){
            a[san[i]].real+=1;
            num[san[i]]++;
        }
        FFT(a,len,1);
        for(int i=0;i<len;i++){
            a[i]=a[i]*a[i];
        }
        FFT(a,len,-1);
    }
}


版权声明:本文为博主原创文章,未经博主允许不得转载。

相关文章推荐

IQ FFT 频谱

  • 2017-09-14 18:14
  • 902B
  • 下载

xc2000_FFT算法介绍

  • 2017-03-08 10:08
  • 450KB
  • 下载

UOJ #34 多项式乘法 FFT快速傅立叶变换

题目大意:这是一道模板题。 CODE: #include #include #include #include #include #define MAX 1000010 ...

FFT 【JSOI2012】bzoj4332 分零食

题目大意:有n个小朋友,m块糖。 给小朋友分糖,如果一个小朋友分不到糖,那他后面的小朋友也分不到糖。 每个小朋友有一个喜悦值,有三个参数,O,S,U,设一个小朋友分到糖数为x,则这个小朋友的喜悦值...

24点FFT算法

Processing-Minim翻译----------Class FFT

尊重原创,http://blog.csdn.net/y1196645376/article/details/53318956 转载请申明出处,谢谢!FFT extends FourierTransf...

快速傅立叶 FFT

  • 2016-03-01 10:38
  • 28.81MB
  • 下载
内容举报
返回顶部
收藏助手
不良信息举报
您举报文章:深度学习:神经网络中的前向传播和反向传播算法推导
举报原因:
原因补充:

(最多只允许输入30个字)