# FFT

FFT新手请参考下面链接

http://www.gatevin.moe/acm/fft算法学习笔记/

#include<cstdio>
#include<cstring>
#include<iostream>
#include<algorithm>
#include<cmath>
using namespace std;
const int maxn=220005;
const double eps(1e-8);
typedef long long LL;
const double PI = acos(-1.0);

struct Complex
{
double real, image;
Complex(double _real, double _image)
{
real = _real;
image = _image;
}
Complex(){}
};

Complex operator + (const Complex &c1, const Complex &c2)
{
return Complex(c1.real + c2.real, c1.image + c2.image);
}

Complex operator - (const Complex &c1, const Complex &c2)
{
return Complex(c1.real - c2.real, c1.image - c2.image);
}

Complex operator * (const Complex &c1, const Complex &c2)
{
return Complex(c1.real*c2.real - c1.image*c2.image, c1.real*c2.image + c1.image*c2.real);
}

int rev(int id, int len)
{
int ret = 0;
for(int i = 0; (1 << i) < len; i++)
{
ret <<= 1;
if(id & (1 << i)) ret |= 1;
}
return ret;
}

Complex A[maxn<<1];
void FFT(Complex* a, int len, int DFT)//对a进行DFT或者逆DFT, 结果存在a当中,len必须是2的幂而且len大于多项式最高次数
{
for(int i = 0; i < len; i++)
A[rev(i, len)] = a[i];
for(int s = 1; (1 << s) <= len; s++)
{
int m = (1 << s);
Complex wm = Complex(cos(DFT*2*PI/m), sin(DFT*2*PI/m));
for(int k = 0; k < len; k += m)
{
Complex w = Complex(1, 0);
for(int j = 0; j < (m >> 1); j++)
{
Complex t = w*A[k + j + (m >> 1)];
Complex u = A[k + j];
A[k + j] = u + t;
A[k + j + (m >> 1)] = u - t;
w = w*wm;
}
}
}
if(DFT == -1) for(int i = 0; i < len; i++) A[i].real /= len, A[i].image /= len;
for(int i = 0; i < len; i++) a[i] = A[i];
return;
}
Complex a[maxn<<1];
int san[maxn];
int num[maxn<<1];
LL xishu[maxn<<1];
int main()
{
int t,n;
cin>>t;
while(t--){
scanf("%d",&n);
int len=1;
int s=0;
for(int i=1;i<=n;i++){
scanf("%d",&san[i]);
s=max(s,san[i]);
}
while(len<=s){
len<<=1;
}
len<<=1;
sort(san+1,san+1+n);
for(int i=0;i<len;i++){
a[i]=Complex(0,0);
num[i]=0;
}
for(int i=1;i<=n;i++){
a[san[i]].real+=1;
num[san[i]]++;
}
FFT(a,len,1);
for(int i=0;i<len;i++){
a[i]=a[i]*a[i];
}
FFT(a,len,-1);
}
}


• 本文已收录于以下专栏：

## 深入浅出解释FFT（一）——用fft求频谱

• wordwarwordwar
• 2017年04月02日 11:41
• 3367

## FFT在图像处理中的简单应用

**傅里叶变换： X(f)=∫∞−∞x(t)e−i2πftdtX(f)=\int_{-\infty}^{\infty}x(t)e^{-i2\pi ft} dt 傅里叶逆变换： x(t)=∫∞−∞...
• theArcticOcean
• 2016年04月20日 19:57
• 4358

## Matlab实现FFT变换

• rodgerjie1993
• 2016年11月21日 20:17
• 2674

## FFT详解&大数乘法

• Ripped
• 2017年04月19日 15:52
• 1796

## FFT:快速傅里叶变换与高精度乘法

• ljhandlwt
• 2016年07月24日 09:31
• 4252

## 注意fft画图横坐标的设置

clear clc; t=0:0.001:5; n=5001; Fs=1000; Fc=200; x=cos(2*pi*Fc*t); y1=fft(x); y2=fftshift(y1); f=(0:...
• gtkknd
• 2016年08月03日 14:29
• 1650

## FFT快速傅里叶变换-递归版-带注释模板

FFT 真·存模板系列
• u010336344
• 2017年03月05日 15:21
• 1556

## FFT 窗口T 和采样率，混叠？

• gtkknd
• 2014年07月08日 14:52
• 1195

## FFT介绍

• Dylan_Frank
• 2016年10月30日 23:01
• 385

## VC++ 下FFT试验

#include using namespace std; #define MAX 2048 #define FFT_1024  #define FFTNUM 1024 #...
• zh9454
• 2015年09月26日 11:14
• 660

举报原因： 您举报文章：FFT 色情 政治 抄袭 广告 招聘 骂人 其他 (最多只允许输入30个字)