关闭

[置顶] 初识机器学习-理论篇

机器学习就是利用计算机从历史数据中找出规律,并把这些规律用到对未来不确定场景的决策。与传统的数据分析相比,区别如下: - 传统数据分析的主体是人,依靠人的经验和知识水平;机器学习的主体是机器,抛弃对人的依赖。 - 机器学习数据量越大,找出的规律越精准。 - 从数据中找规律转换成数学规律和数学公式。 - 解决业务问题不同,数据分析,报告历史上发生的事情。机器学习,通过历史上发生的事情,来预测未来的事情。...
阅读(315) 评论(1)

采用python进行Android的多渠道打包

背景就是假如有一个.apk安装包,没有源码,不能改里面的代码,但是知道里面的渠道配置是采用的友盟的方式,在androidManifest里面配置的渠道号,问如何才能用脚本实现多渠道打包。多渠道打包的两种实现方式1.美团的方案目前网上流行的都是美团的解决方案,读取配置文件然后在META-INF目录下新建一个空文件,文件名就是渠道号,然后改java代码去获取文件名字,并设置渠道号,这种方案随便一搜一...
阅读(74) 评论(0)

Android消息推送之自启动

背景最近公司的项目需要及时聊天功能,聊天功能基本上已经完成,采用的是自己搭建的socket长连接来实现聊天的方按。安排我研究消息推送,主要确保杀死App后还能正常接收消息,重启后也能收到消息。消息推送的重难点 1.长连接消息收发功能的实现。 2.消息的实时推送,确保消息的达到率。第一条目前已经实现,不在本文讨论的范围,主要是针对第二点讨论。要做到消息的实时推送,保证消息的到达率,当然是后台服务常驻的...
阅读(413) 评论(0)

神经网络-感知器算法python代码实现

在上一篇我们介绍了神经网络感知器算法,现在我们用python代码实现感知器算法。# -*- coding: utf-8 -*- import numpy as np class Perceptron(object): """ eta:学习率 n_iter:权重向量的训练次数 w_:神经分叉权重向量 errors_:用于记录神经元判断出错次数 """...
阅读(206) 评论(0)

神经网络入门-感知器算法

w是每个神经元的权重,x是每个神经元的输入信号,进行矩阵点乘运算得到神经元的输入和,这个时候需要一个阈值来进行判断输出是1还是0。 当求和得到的z小于等于阈值的时候,输出为0,反之为1。感知器算法权重和阈值的训练其中,最困难的部分就是确定权重(w)和阈值(b)。目前为止,这两个值都是主观给出的,但现实中很难估计它们的值,必需有一种方法,可以找出答案。 这种方法就是试错法。...
阅读(79) 评论(0)

Pyhton数据挖掘-电力窃漏电用户的自动识别

概述本来主要是对博主在Python数据分析与挖掘实战的上第六章实践过程中所出现问题的总结,看本文的之前最好是看过这本书的第六章。问题一:采用anaconda环境下安装tensorFlow后,pycharm识别不了TensorFlow。情况是这样的,博主在首先安装好tensorFlow后,再安装keras成功后,pycharm识别不了TensorFlow。 然后设置python解析器路径,如图:...
阅读(389) 评论(5)

用餐饮客户消费数据进行K-Means算法实战

概念对于连续属性,要先进行零-均值规范,在进行距离的计算。在K-Means算法中,一般需要度量样本间的距离,样本与簇之间的距离以及簇与簇之间的距离 数据现在有部分餐饮客户的消费数据见表方法R表示最近一次消费时间间隔,F表示消费频率,M表示消费总金额。 采用K-Means聚类算法,设定聚类个数为3,最大迭代次数为3,距离函数只能采用欧式距离代码与解释# -*- coding: utf-8 -*-...
阅读(149) 评论(0)

聚类分析初识

实例举两个实际列子: 1. 如何通过对餐饮客户消费行为的测量,进一步评判餐饮客户的价值和对餐饮客户进行细分,找到有价值的客户群和需要关注的客户群 2. 如何合理对菜品进行分析,以便区分哪些菜品畅销毛利又高,哪些菜品滞销毛利又低。 聚类分析定义聚类分析是在没有给定划分类别的情况下,根据相似度进行样本分组的一种方法。是一种非监督的学习算法,划分的原则是组内距离最小化而...
阅读(99) 评论(0)

采用scikit-learn进行银行贷款拖欠数据分析

经过数据探索与数据预处理,得到了可以直接建模的数据。根据挖掘目标和数据形式可以建立分类与预测、聚类分析、关联规则、时序模式和偏差检测等模型,帮助企业提取数据中蕴含的商业价值,提高企业的竞争力...
阅读(98) 评论(0)

用拉格朗日法进行数据插补

用拉格朗日法进行数据插补代码如下# coding=utf-8 import pandas as pd from scipy.interpolate import lagrangeinputfile = 'data/catering_sale.xls' outputfile = 'data/sales.xls' data = pd.read_excel(inputfile) # 过滤异常值,将值变为N...
阅读(129) 评论(0)
50条 共5页1 2 3 4 5 ... 下一页 尾页
    个人资料
    • 访问:54231次
    • 积分:1031
    • 等级:
    • 排名:千里之外
    • 原创:49篇
    • 转载:1篇
    • 译文:0篇
    • 评论:19条
    github
    微信公众号
    文章分类