关闭

似然函数Likelihood Function

标签: 机器学习概率统计
39人阅读 评论(0) 收藏 举报
分类:

关于似然函数,其实与“概率”差不多
在我的理解中,概率,是从已知的参数中来预测结果
而似然函数则是从结果中推理得到最适合的参数(使似然函数值最大)
例如最常见的抛硬币事件,我们都知道一枚硬币正面的概率是p0=0.5,反面为1-p0=0.5
那么抛出两个正面的概率就是P=0.25
而如果我们抛了两次硬币都是正面,那么这里我们假设p0=θ(0≤θ≤1)
则似然函数L(p0*p0)=θ2
为了使L取得极大值,θ=1为最佳情况
同理,若抛了五次硬币,两次正面三次反面
则有L(θ)=θ2(1-θ)3
要使L取得极大值,我们估计θ=25 为佳
以上是最naive的理解,更一般的可访问如下链接:
http://blog.csdn.net/yanqingan/article/details/6125812

0
0

查看评论
* 以上用户言论只代表其个人观点,不代表CSDN网站的观点或立场
    个人资料
    • 访问:5269次
    • 积分:163
    • 等级:
    • 排名:千里之外
    • 原创:22篇
    • 转载:0篇
    • 译文:0篇
    • 评论:0条
    文章分类