似然函数Likelihood Function

原创 2016年08月29日 16:00:05

关于似然函数,其实与“概率”差不多
在我的理解中,概率,是从已知的参数中来预测结果
而似然函数则是从结果中推理得到最适合的参数(使似然函数值最大)
例如最常见的抛硬币事件,我们都知道一枚硬币正面的概率是p0=0.5,反面为1-p0=0.5
那么抛出两个正面的概率就是P=0.25
而如果我们抛了两次硬币都是正面,那么这里我们假设p0=θ(0≤θ≤1)
则似然函数L(p0*p0)=θ2
为了使L取得极大值,θ=1为最佳情况
同理,若抛了五次硬币,两次正面三次反面
则有L(θ)=θ2(1-θ)3
要使L取得极大值,我们估计θ=25 为佳
以上是最naive的理解,更一般的可访问如下链接:
http://blog.csdn.net/yanqingan/article/details/6125812

版权声明:本文为博主原创文章,未经博主允许不得转载。

似然函数 Likelihood Function

  • 2017年06月05日 09:05
  • 153KB
  • 下载

似然函数 Likelihood Function

似然函数 Likelihood Function       在机器学习中我们通常基于已有的学习集数据建立预测模型,然后使用该模型在测试数据集上检测该模型的有效性。     为量化模型有效性引入...

似然函数Likelihood function

在数理统计学中,似然函数是一种关于统计模型中的参数的函数,表示模型参数中的似然性。似然函数在统计推断中有重大作用,如在最大似然估计和费雪信息之中的应用等等。“似然性”与“或然性”或“概率”意思相近,都...

似然函数likelihood function

在数理统计学中,似然函数是一种关于统计模型中的参数的函数,表示模型参数中的似然性。...

损失函数J的由来-似然-likelihood

似然率,这是什么呢,如果不太深入理解似然性的,会说似然性就是概率啊。似然率和概率很相似,在统计学中,却有明确区分。...

【机器学习】先验概率、后验概率、贝叶斯公式、 似然函数

Original url: http://m.blog.csdn.net/article/details?id=49130173 一、先验概率、后验概率、贝叶斯公式、 似然函数 在机器学...
  • junmuzi
  • junmuzi
  • 2016年04月19日 17:16
  • 6499

似然函数 ---转自维基百科

在数理统计学中,似然函数(Likelihood function)是一种关于统计模型中的参数的函数,表示模型参数中的似然性。似然函数在统计推断中有重大作用,如在最大似然估计和费雪信息之中的应用等等。“...
  • hjl240
  • hjl240
  • 2016年09月01日 19:57
  • 1120

先验概率,似然函数和后验概率

一句话总结先验概率P,乘以似然函数L,正比于后验概率。Posterior∝Likelihood∗Prior Posterior \propto Likelihood * Prior 重点先验概率,后验...

关于先验概率、似然函数以及后验概率的一点总结

重要贝叶斯公式:后验概率∝先验概率*似然函数 先验概率: 在贝叶斯分布中,先验概率分布是指关于某个变量X的分布,即是在获得某些信息或者依据前,对变量X的不确定性所作出的猜测。这是对不确定性(而不是...

机器学习线性回归(linear regression)/梯度下降法(gradient descent)/最大似然函数/--附python代码

线性回归是一个比较简单的算法,这里主要借线性回归,讲一下梯度下降法和最大似然函数,后面逻辑回归也会用到。...
内容举报
返回顶部
收藏助手
不良信息举报
您举报文章:似然函数Likelihood Function
举报原因:
原因补充:

(最多只允许输入30个字)