似然函数Likelihood Function

原创 2016年08月29日 16:00:05

关于似然函数,其实与“概率”差不多
在我的理解中,概率,是从已知的参数中来预测结果
而似然函数则是从结果中推理得到最适合的参数(使似然函数值最大)
例如最常见的抛硬币事件,我们都知道一枚硬币正面的概率是p0=0.5,反面为1-p0=0.5
那么抛出两个正面的概率就是P=0.25
而如果我们抛了两次硬币都是正面,那么这里我们假设p0=θ(0≤θ≤1)
则似然函数L(p0*p0)=θ2
为了使L取得极大值,θ=1为最佳情况
同理,若抛了五次硬币,两次正面三次反面
则有L(θ)=θ2(1-θ)3
要使L取得极大值,我们估计θ=25 为佳
以上是最naive的理解,更一般的可访问如下链接:
http://blog.csdn.net/yanqingan/article/details/6125812

版权声明:本文为博主原创文章,未经博主允许不得转载。

相关文章推荐

似然函数 Likelihood Function

  • 2017-06-05 09:05
  • 153KB
  • 下载

似然函数 Likelihood Function

似然函数 Likelihood Function       在机器学习中我们通常基于已有的学习集数据建立预测模型,然后使用该模型在测试数据集上检测该模型的有效性。     为量化模型有效性引入...

似然函数Likelihood function

在数理统计学中,似然函数是一种关于统计模型中的参数的函数,表示模型参数中的似然性。似然函数在统计推断中有重大作用,如在最大似然估计和费雪信息之中的应用等等。“似然性”与“或然性”或“概率”意思相近,都...

似然函数likelihood function

在数理统计学中,似然函数是一种关于统计模型中的参数的函数,表示模型参数中的似然性。

先验概率,似然函数和后验概率

一句话总结先验概率P,乘以似然函数L,正比于后验概率。Posterior∝Likelihood∗Prior Posterior \propto Likelihood * Prior 重点先验概率,后验...

先验概率、似然函数、后验概率、贝叶斯公式

这个文章的目的是为了加强对这几个概念的理解与记忆。 怕自己不知道什么时候又忘了。 看自己写的东西总应该好理解记忆一些吧。 联合概率的乘法公式: (当随机变量x,y独立,则) ...

机器学习线性回归(linear regression)/梯度下降法(gradient descent)/最大似然函数/--附python代码

线性回归是一个比较简单的算法,这里主要借线性回归,讲一下梯度下降法和最大似然函数,后面逻辑回归也会用到。

一个关于先验概率、似然函数与后验概率计算的小例子

来先举一个例子: 如果有一所学校,有60%是男生和40%是女生。女生穿裤子与裙子的数量相同;所有男生穿裤子。一个观察者,随机从远处看到一名学生,观察者只能看到该学生穿裤子。那么该学生是女生的概率是多...

似然函数 ---转自维基百科

在数理统计学中,似然函数(Likelihood function)是一种关于统计模型中的参数的函数,表示模型参数中的似然性。似然函数在统计推断中有重大作用,如在最大似然估计和费雪信息之中的应用等等。“...

从极大似然函数到EM算法

最近看斯坦福大学的机器学习课程,
内容举报
返回顶部
收藏助手
不良信息举报
您举报文章:深度学习:神经网络中的前向传播和反向传播算法推导
举报原因:
原因补充:

(最多只允许输入30个字)