[置顶] AI大行其道,你准备好了吗?—谨送给徘徊于转行AI的程序员

前言  近年来,随着 Google 的 AlphaGo 打败韩国围棋棋手李世乭之后,机器学习尤其是深度学习的热潮席卷了整个IT界。所有的互联网公司,尤其是 Google 微软,百度,腾讯等巨头,无不在布局人工智能技术和市场。百度,腾讯,阿里巴巴,京东,等互联网巨头甚至都在美国硅谷大肆高薪挖掘人工智能人才。现在在北京,只要是机器学习算法岗位,少则月薪 20k,甚至100k 以上……  不错,新时代时代...
阅读(14372) 评论(82)

[置顶] 无监督聚类算法该如何评价

学过机器学习的小伙伴应该都很清楚:几乎所有的机器学习理论与实战教材里面都有非常详细的理论化的有监督分类学习算法的评价指标。例如:正确率、召回率、精准率、ROC曲线、AUC曲线。但是几乎没有任何教材上有明确的关于无监督聚类算法的评价指标!       那么学术界到底有没有成熟公认的关于无监督聚类算法的评价指标呢?本文就是为了解决大家的这个疑惑而写的,并且事先明确的告诉大家,关于无监督聚类算法结果好坏的...
阅读(2962) 评论(19)

[置顶] Isolation Forest算法实现详解

本文算法完整实现源码已开源至本人的GitHub(如果对你有帮助,请给一个 star ),参看其中的 iforest 包下的 IForest 和 ITree 两个类: https://github.com/JeemyJohn/AnomalyDetection前言       本文介绍的 Isolation Forest 算法原理请参看我的博客:Isolation Forest异常检测算法原理详解,本文...
阅读(1401) 评论(10)

[置顶] Isolation Forest算法原理详解

本文只介绍原论文中的 Isolation Forest 孤立点检测算法的原理,实际的代码实现详解请参照我的另一篇博客:Isolation Forest算法实现详解。       或者读者可以到我的GitHub上去下载完整的项目源码以及测试代码(源代码程序是基于maven构建): https://github.com/JeemyJohn/AnomalyDetection。前言       随着机器学习...
阅读(2362) 评论(24)

[置顶] 机器学习中的数据不平衡解决方案大全

在机器学习任务中,我们经常会遇到这种困扰:数据不平衡问题。       数据不平衡问题主要存在于有监督机器学习任务中。当遇到不平衡数据时,以总体分类准确率为学习目标的传统分类算法会过多地关注多数类,从而使得少数类样本的分类性能下降。绝大多数常见的机器学习算法对于不平衡数据集都不能很好地工作。       本文介绍几种有效的解决数据不平衡情况下有效训练有监督算法的思路:1、重新采样训练集...
阅读(17065) 评论(37)

[置顶] 深度神经网络训练的必知技巧

本文主要介绍8种实现细节的技巧或tricks:数据增广、图像预处理、网络初始化、训练过程中的技巧、激活函数的选择、不同正则化方法、来自于数据的洞察、集成多个深度网络的方法。1. 数据增广       在不改变图像类别的情况下,增加数据量,能提高模型的泛化能力。      自然图像的数据增广方式包括很多,如常用的水平翻转(horizontally flipping),一定程度的位移或者裁剪和颜色抖动...
阅读(5230) 评论(31)

Amazon面试题

亚马逊面试题:如下所示的Map中,0代表海水,1代表岛屿,其中每一个岛屿与其八领域的区间的小岛能相连组成岛屿群。写代码,统计Map中岛屿个数。/* Q1. Map [ 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 1 0 0 0 0...
阅读(77) 评论(0)

超参数的选择与交叉验证

1. 超参数有哪些  与超参数对应的是参数。参数是可以在模型中通过BP(反向传播)进行更新学习的参数,例如各种权值矩阵,偏移量等等。超参数是需要进行程序员自己选择的参数,无法学习获得。   常见的超参数有模型(SVM,Softmax,Multi-layer Neural Network,…),迭代算法(Adam,SGD,…),学习率(learning rate)(不同的迭代算法还有各种不同的超参...
阅读(88) 评论(0)

详解数据挖掘与机器学习的区别与联系

0、为什么写这篇博文  最近有很多刚入门AI领域的小伙伴问我:数据挖掘与机器学习之间的区别于联系。为了不每次都给他们长篇大论的解释,故此在网上整理了一些资料,整理成此篇文章,下次谁问我直接就给他发个链接就好了。  本篇文章主要阐述我个人在数据挖掘、机器学习等方面的学习心得,并搜集了网上的一些权威解释,或许不太全面,但应该会对绝大多数入门者有一个直观地解释。  本文主要参照周志华老师的:机器学习与数据...
阅读(1012) 评论(1)

Java 7 新特性try-with-resources语句

1、什么是try-with-resources语句       try-with-resources 语句是一个声明一个或多个资源的 try 语句。一个资源作为一个对象,必须在程序结束之后随之关闭。 try-with-resources 语句确保在语句的最后每个资源都被关闭 。任何实现了 Java.lang.AutoCloseable 接口的对象,包括所有实现了 java.io.Closeable...
阅读(298) 评论(0)

CSDN博客积分规则

1、博客积分规则      博客积分是CSDN对用户努力的认可和奖励,也是衡量博客水平的重要标准。博客等级也将由博客积分唯一决定。积分规则具体如下: 每发布一篇原创或者翻译文章:可获得10分; 每发布一篇转载文章:可获得2分; 博主的文章每被评论一次:可获得1分; 每发表一次评论:可获得1分(自己给自己评论、博主回复评论不获得积分); 博文阅读次数每超过100次:可获得1分,阅读加分最高加到100分...
阅读(250) 评论(6)

Win10 64bit下安装GPU版Tensorflow+Keras

Tensorflow和Keras都是支持Python接口的,所以本文中说的都是搭建一个Python的深度学习环境。        Keras是对Tensorflow或者Theano的再次封装,也就是以Tensorflow或Theano为后端,默认的后端是tensorflow,如果你想使用theano为后端,可以更改为theano。Keras为什么要对tensorflow和theano进行再次封装,当...
阅读(592) 评论(11)

Jedis操作Redis技巧详解

对于Redis的部署模式有两种,单机模式 和 集群模式。因此,本文的介绍也从这两个方面进行介绍。众所周知,Jedis是最著名的Redis java客户端操作类库,几乎支持所有的Redis操作。本文就是要介绍Jedis API如何操作两种模式下的Redis数据库,以及相关的操作技巧。      本文介绍的全都是基于maven的管理方式建立的Java项目。首先,为了Java程序中使用Jedis API,...
阅读(452) 评论(6)

程序化广告欺诈流量过滤方法

打击虚假流量需各方携手,解决流量欺诈问题仅依靠广告验证是远远不够的,广告验证能够帮助广告主和行业指出问题所在,还需要供应链上的各方共同努力,携手打造反作弊生态圈。1、DSP(需求方平台,Demand-Side Platform)       DSP作为需求方平台,要真正站在广告主的需求和利益角度,从技术、数据、算法和团队四个维度出发,对作弊流量、问题流量和可疑流量进行主动屏蔽和过滤;在此基础上,形成...
阅读(322) 评论(2)

TensorFlow官网访问不了

相信很多搞深度学习的小伙伴最近都为访问不了 TensorFlow官网 而苦恼吧!虽然网上也给出了一些方法,但是却缺少一个很重要的步骤。接下来,我就给大家讲解一个完整的过程,大牛绕过。1、更改Hosts      在Windows的host文件(位置在C:\Windows\System32\drivers\etc\hosts)末尾添加如下内容:#TensorFlow start 64.233.188...
阅读(1082) 评论(2)

BP神经网络的原理及推导

首先什么是人工神经网络?简单来说就是将单个感知器作为一个神经网络节点,然后用此类节点组成一个层次网络结构,我们称此网络即为人工神经网络(本人自己的理解)。当网络的层次大于等于3层(输入层+隐藏层(大于等于1)+输出层)时,我们称之为多层人工神经网络。1、神经单元的选择       那么我们应该使用什么样的感知器来作为神经网络节点呢?在上一篇文章我们介绍过感知器算法,但是直接使用的话会存在以下问题:感...
阅读(484) 评论(8)
79条 共6页1 2 3 4 5 ... 下一页 尾页
    个人资料
    • 访问:78023次
    • 积分:2458
    • 等级:
    • 排名:第14692名
    • 原创:69篇
    • 转载:6篇
    • 译文:4篇
    • 评论:658条
    我的公众号

    博客专栏
    最新评论