关闭

[置顶] Scikit-learn实战之SVM回归分析、密度估计、异常点检测

标签: svm机器学习
3459人阅读 评论(4) 收藏 举报
分类:

1. SVM回归

       SVM的支持向量的方法能够被扩展以解决回归问题。这种方法被称之为SVRSupport Vector Regression 支持向量回归)。该模型是由SVC(支持向量分类)演化而来,它依然依赖于训练数据的子集。因为构建Model的损失函数并不关心位于边缘上的训练点(样本)集。类似的,由支持向量回归(SVR)生成的模型仅仅依赖于训练数据的某个子集,因为构建模型的损失函数忽略了所有的接近模型预测的训练数据。
        Scikit-learn提供了三种不同的支持向量回归的实现:SVR, NuSVR 和 LinearSVR。LinearSVR提供了最快的实现,但是它仅仅实现了线性核函数。如果想搞清楚它们三者的具体实现细节,请点击 Implementation details .

        作为回归分析的参数,y必须是浮点数型:

>>> from sklearn import svm
>>> X = [[0, 0], [2, 2]]
>>> y = [0.5, 2.5]
>>> clf = svm.SVR()
>>> clf.fit(X, y) 
>>> clf.predict([[1, 1]])
array([ 1.5])

2. 密度估计、异常点检测

       One-class SVM用于异常点检测。也就是说,给一个样本集合,它将检测该点集的软边缘以对将来的新的检测点是否属于该集合加以判断。该类的实现是OneClassSVM。检测结果为1表示内部点,-1表示离群点。

>>> from sklearn import svm
>>> X = [[0, 0], [1, 1], [2, 0], [0, 3], [-3, 0], [-1, -1], [-2, -2], [-2, 2], [2, -2]]
>>> Y = [[0.5, 0.5], [-2.5, 0], [9, 9], [5, -2]]
>>> estimate = svm.OneClassSVM()
>>> estimate.fit(X)
>>> results = estimate.predict(Y)
>>> print(results)
[ 1.  1. -1. -1.]

3. 复杂性分析

SVM是一个强大的工具,但是它对计算和存储需求随着训练样本的增加而急剧增长。SVM的核心是一个二次规划问题,计算的复杂度在这里写图片描述这里写图片描述之间。


对机器学习,人工智能感兴趣的小伙伴可以加我微信:JeemyJohn,我拉你进我的机器学习群(群里很多高手哦!),或者扫描二维码!当然你也可以关注我的公众号,点击链接:燕哥带你学算法公众号团队简介

这里写图片描述

6
0
查看评论
发表评论
* 以上用户言论只代表其个人观点,不代表CSDN网站的观点或立场

Scikit-learn实战之SVM回归分析、密度估计、异常点检测

1. SVM回归       SVM的支持向量的方法能够被扩展以解决回归问题。这种方法被称之为SVR(Support Vector Regression 支持向量回归)。该模型是由SVC(支持向量分类...
  • u013709270
  • u013709270
  • 2016-11-27 20:32
  • 3459

无监督︱异常、离群点检测 一分类——OneClassSVM

OneClassSVM两个功能:异常值检测、解决极度不平衡数据因为之前一直在做非平衡样本分类的问题,其中如果有一类比例严重失调,就可以直接用这个方式来做:OneClassSVM;OneClassSVM...
  • sinat_26917383
  • sinat_26917383
  • 2017-08-03 19:44
  • 3157

机器学习实验(九):基于高斯分布和OneClassSVM的异常点检测

声明:版权所有,转载请联系作者并注明出处  http://blog.csdn.net/u013719780?viewmode=contents 大多数数据挖掘或数据工作中,异...
  • u013719780
  • u013719780
  • 2016-11-18 17:50
  • 8042

【Scikit-Learn 中文文档】密度估计 - 无监督学习 - 用户指南 | ApacheCN

中文文档: http://sklearn.apachecn.org/cn/stable/modules/density.html 英文文档: http://sklearn.apachecn.or...
  • l_xzm
  • l_xzm
  • 2017-11-30 21:47
  • 77

scikit-learn 中文文档-密度估计-无监督学习|ApacheCN

中文文档: http://sklearn.apachecn.org/cn/stable/modules/density.html 英文文档: http://sklearn.apachecn.or...
  • qq_41127512
  • qq_41127512
  • 2017-11-30 19:04
  • 22

【Scikit-Learn 中文文档】密度估计 - 无监督学习 - 用户指南 | ApacheCN

中文文档: http://sklearn.apachecn.org/cn/stable/modules/density.html 英文文档: http://sklearn.apachecn.or...
  • qq_33612499
  • qq_33612499
  • 2017-12-03 09:52
  • 38

【Scikit-Learn 中文文档】二十六:密度估计 - 无监督学习 - 用户指南 | ApacheCN

密度估计在无监督学习,特征工程和数据建模之间划分了界线。一些最流行和最有用的密度估计方法是混合模型,如高斯混合( sklearn.mixture.GaussianMixture ), 和基于邻近的方法...
  • lonsonlee
  • lonsonlee
  • 2017-12-04 09:52
  • 129

【Scikit-Learn 中文文档】密度估计 - 无监督学习 - 用户指南 | ApacheCN

中文文档: http://sklearn.apachecn.org/cn/stable/modules/density.html 英文文档: http://sklearn.apachecn.or...
  • Islotus
  • Islotus
  • 2017-12-03 20:43
  • 20

【Scikit-Learn 中文文档】密度估计 - 无监督学习 - 用户指南 | ApacheCN

中文文档: http://sklearn.apachecn.org/cn/stable/modules/density.html 英文文档: http://sklearn.apachecn.or...
  • marsjhao
  • marsjhao
  • 2017-11-30 16:58
  • 80

【Scikit-Learn 中文文档】密度估计 - 无监督学习 - 用户指南 | ApacheCN

密度估计在无监督学习,特征工程和数据建模之间划分了界线。一些最流行和最有用的密度估计方法是混合模型,如高斯混合( sklearn.mixture.GaussianMixture ), 和基于邻近的方法...
  • jingwangfei
  • jingwangfei
  • 2017-11-30 16:23
  • 18
    机器学习公众号

    关注微信公众号,专

    为机器学习入门者
    个人资料
    • 访问:206160次
    • 积分:4519
    • 等级:
    • 排名:第7585名
    • 原创:114篇
    • 转载:14篇
    • 译文:3篇
    • 评论:785条
    博客专栏
    最新评论