关闭

普里姆(Prim)算法

标签: 算法设计
551人阅读 评论(0) 收藏 举报
分类:

普里姆(Prim)算法,和克鲁斯卡尔算法一样,是用来求加权连通图的最小生成树的算法。

1、基本思想

  对于图G4而言,V是所有顶点的集合;现在,设置两个新的集合U和T,其中U用于存放G的最小生成树中的顶点,T存放G的最小生成树中的边。
  
  从所有uЄU,vЄ(V-U) (V-U表示出去U的所有顶点)的边中选取权值最小的边(u, v),将顶点v加入集合U中,将边(u, v)加入集合T中,如此不断重复,直到U=V为止,最小生成树构造完毕,这时集合T中包含了最小生成树中的所有边。

2、普里姆算法图解

这里写图片描述

下面我们将以上面的G4图为例,来对普里姆算法进行演示(从第一个顶点A开始通过普里姆算法生成最小生成树)。

详细步骤如下:

这里写图片描述

步骤解释如下:

初始状态:V是所有顶点的集合,即V={A,B,C,D,E,F,G};U和T为空!

第1步:将顶点A加入到U中:此时,U={A}。

第2步:将顶点B加入到U中:上一步操作之后,U={A}, V-U={B,C,D,E,F,G};因此,边(A,B)的权值最小。将顶点B添加到U中:此时,U={A,B}。

第3步:将顶点F加入到U中:上一步操作之后,U={A,B}, V-U={C,D,E,F,G};因此,边(B,F)的权值最小。将顶点F添加到U中:此时,U={A,B,F}。

第4步:将顶点E加入到U中:上一步操作之后,U={A,B,F}, V-U={C,D,E,G};因此,边(F,E)的权值最小。将顶点E添加到U中: 此时,U={A,B,F,E}。

第5步:将顶点D加入到U中:上一步操作之后,U={A,B,F,E}, V-U={C,D,G};因此,(E,D)的权值最小。将顶点D添加到U中:此时,U={A,B,F,E,D}。

第6步:将顶点C加入到U中:上一步操作之后,U={A,B,F,E,D}, V-U={C,G};因此,边(D,C)的权值最小。将顶点C添加到U中: 此时,U={A,B,F,E,D,C}。

第7步:将顶点G加入到U中:上一步操作之后,U={A,B,F,E,D,C}, V-U={G};因此,边(F,G)的权值最小。将顶点G添加到U中:此时,U=V。

此时,最小生成树构造完成!它包括的顶点依次是:A B F E D C G。

下面以”邻接矩阵”为例对普里姆算法进行说明,对于”邻接表”实现的图在后面会给出相应的源码。

基本定义

// 邻接矩阵
typedef struct _graph
{
     char vexs[MAX];         // 顶点集合
    int vexnum;           // 顶点数
    int edgnum;           // 边数
    int matrix[MAX][MAX];     // 邻接矩阵
}Graph, *PGraph;
// 边的结构体
typedef struct _EdgeData
{
     char start;    // 边的起点
    char end;   // 边的终点
    int weight;  // 边的权重
}EData;

  其中Graph是邻接矩阵对应的结构体。
  vexs用于保存顶点,vexnum是顶点数,edgnum是边数;matrix则是用于保存矩阵信息的二维数组。例如,matrix[i][j]=1,则表示”顶点i(即vexs[i])”和”顶点j(即vexs[j])”是邻接点;matrix[i][j]=0,则表示它们不是邻接点。 EData是邻接矩阵边对应的结构体。

普里姆算法

#include<stdio.h>
#include<stdlib.h>
#include<malloc.h>
#include<string.h>
#define MAX 100
#define INF (~(0x1<<31))
typedef struct Graph
{
    char vexs[MAX];
    int vexnum;
    int edgnum;
    int matrix[MAX][MAX];
} Graph,*PGraph;

typedef struct EdgeData
{
    char start;
    char end;
    int weight;
} EData;
static int get_position(Graph g,char ch)
{
    int i;
    for(i=0; i<g.vexnum; i++)
        if(g.vexs[i]==ch)
            return i;
    return -1;
}

Graph* create_graph()
{
    char vexs[]= {'A','B','C','D','E','F','G'};
    int matrix[][7]=
            {
                    {0,12,INF,INF,INF,16,14},
                    {12,0,10,INF,INF,7,INF},
                    {INF,10,0,3,5,6,INF},
                    {INF,INF,3,0,4,INF,INF},
                    {INF,INF,5,4,0,INF,8},
                    {16,7,6,INF,2,0,9},
                    {14,INF,INF,INF,8,9,0}
            };
    int vlen=sizeof(vexs)/sizeof(vexs[0]);
    int i,j;
    Graph *pG;
    if((pG=(Graph*)malloc(sizeof(Graph)))==NULL)
        return NULL;
    memset(pG,0,sizeof(pG));
    pG->vexnum=vlen;
    for(i=0; i<pG->vexnum; i++)
        pG->vexs[i]=vexs[i];
    for(i=0; i<pG->vexnum; i++)
        for(j=0; j<pG->vexnum; j++)
            pG->matrix[i][j]=matrix[i][j];
    for(i=0; i<pG->vexnum; i++)
    {
        for(j=0; j<pG->vexnum; j++)
        {
            if(i!=j&&pG->matrix[i][j]!=INF)
                pG->edgnum++;
        }
    }
    pG->edgnum/=2;
    return pG;
}
void print_graph(Graph G)
{
    int i,j;
    printf("Matrix Graph: \n");
    for(i=0; i<G.vexnum; i++)
    {
        for(j=0; j<G.vexnum; j++)
            printf("%10d ",G.matrix[i][j]);
        printf("\n");
    }
}

EData* get_edges(Graph G)
{
    EData *edges;
    edges=(EData*)malloc(G.edgnum*sizeof(EData));
    int i,j;
    int index=0;
    for(i=0; i<G.vexnum; i++)
    {
        for(j=i+1; j<G.vexnum; j++)
        {
            if(G.matrix[i][j]!=INF)
            {
                edges[index].start=G.vexs[i];
                edges[index].end=G.vexs[j];
                edges[index].weight=G.matrix[i][j];
                index++;
            }
        }
    }
    return edges;
}
void prim(Graph G,int start)
{
    int min,i,j,k,m,n,sum;
    int index=0;
    char prim[MAX];
    int weight[MAX];

    prim[index++]=G.vexs[start];

    for(i=0; i<G.vexnum; i++)
        weight[i]=G.matrix[start][i];
    weight[start]=0;

    for(i=0; i<G.vexnum; i++)
    {
        //i用来控制循环的次数,每次加入一个结点,但是因为start已经加入,所以当i为start是跳过
        if(start==i)
            continue;
        j=0;
        k=0;
        min=INF;
        for(k=0; k<G.vexnum; k++)
        {
            if(weight[k]&&weight[k]<min)
            {
                min=weight[k];
                j=k;
            }
        }
        sum+=min;
        prim[index++]=G.vexs[j];
        weight[j]=0;
        for(k=0; k<G.vexnum; k++)
        {
            if(weight[k]&&G.matrix[j][k]<weight[k])
                weight[k]=G.matrix[j][k];
        }
    }
    // 计算最小生成树的权值
    sum = 0;
    for (i = 1; i < index; i++)
    {
        min = INF;
        // 获取prims[i]在G中的位置
        n = get_position(G, prim[i]);
        // 在vexs[0...i]中,找出到j的权值最小的顶点。
        for (j = 0; j < i; j++)
        {
            m = get_position(G, prim[j]);
            if (G.matrix[m][n]<min)
                min = G.matrix[m][n];
        }
        sum += min;
    }
    printf("PRIM(%c)=%d: ", G.vexs[start], sum);
    for (i = 0; i < index; i++)
        printf("%c ", prim[i]);
    printf("\n");
}
int main()
{
    Graph *pG;
    pG=create_graph();
    print_graph(*pG);
    prim(*pG,0);
}

对机器学习,人工智能感兴趣的小伙伴可以加我微信JeemyJohn,我拉你进我的机器学习群(群里很多高手哦!),或者扫描二维码!

这里写图片描述

1
0
查看评论

Prim(普利姆)算法+Kruskal(克鲁斯卡尔)算法

Prim(普利姆)算法 1.概览 普里姆算法(Prim算法),图论中的一种算法,可在加权连通图里搜索最小生成树。意即由此算法搜索到的边子集所构成的树中,不但包括了连通图里的所有顶点(英语:Vertex (graph theory)),且其所有边的权值之和亦为最小。该算法于1930年由...
  • oenheng
  • oenheng
  • 2016-08-19 16:11
  • 626

最小生成树——prim 普里姆算法 Kruskal 克鲁斯卡尔算法

假设 N-(V,{E})s
  • xtji1988
  • xtji1988
  • 2014-07-20 15:37
  • 392

普利姆(prim)算法和克鲁斯卡尔(kruskal)算法

连通网的最小生成树算法: 1.普里姆算法——”加点法”。 假设N=(V,{E})是连通网,TE为最小生成树的边集合。 (1)初始U={u0}(u0∈V),TE=φ; (2)在所有u∈U, v∈V-U的边(u,v)中选择一条代价最小的边(u0,v0)并入集合TE,同时将v0并入U;(并修...
  • Solo95
  • Solo95
  • 2016-05-18 17:36
  • 1254

最小生成树——Prim(普利姆)算法

【0】README0.1) 本文总结于 数据结构与算法分析, 源代码均为原创, 旨在 理解Prim算法的idea 并用 源代码加以实现;【1】Prim算法相关1.1)计算最小生成树的一种方法是使其连续地一步一步长成。在每一步, 都要吧一个节点当做根并往上加边,这样也就把相关联的顶点加到增长中的树上;...
  • PacosonSWJTU
  • PacosonSWJTU
  • 2015-11-20 15:21
  • 487

最小生成树之克鲁斯卡尔(Kruskal)算法、普里姆(prim)算法

问题描述:                   在一个具有几个顶点的连通图G中,如果存在子图G'包含G中所有顶点和一部分边,且不形成回路,则称G'为图G的生成树,其中代价最小的生成树...
  • Candy1232009
  • Candy1232009
  • 2012-01-04 11:09
  • 6739

普里姆(Prim)求最小生成树

一、普里姆(Prim)算法  1.基本思想:设G=(V, E)是具有n个顶点的连通网,T=(U, TE)是G的最小生成树, T的初始状态为U={u0}(u0∈V),TE={},重复执行下述操作:在所有u∈U,v∈V-U的边中找一条代价最小的边(u, v)并入集合TE,同时v并入U,直至U=V。即:&...
  • Hackbuteer1
  • Hackbuteer1
  • 2011-06-22 16:06
  • 3876

普里姆算法(Prim算法求最小生成树)

普里姆算法的基本思想:普里姆算法是一种构造最小生成树的算法,它是按逐个将顶点连通的方式来构造最小生成树的。时间复杂度为O(n^2)。 从连通网络N = { V, E }中的某一顶点u0出发,选择与它关联的具有最小权值的边(u0, v),将其顶点加入到生成树的顶点集合U中。以后每一步从一个顶点在U中...
  • xinlingchengbao
  • xinlingchengbao
  • 2016-08-05 18:59
  • 1078

最小生成树算法---普里姆Prim算法

1. 邻接矩阵存储//图的邻接矩阵存储表示 #define INFINITY INT_MAX #define MAX_VERTEX_NUM 20 typedef enum {DG, DN, UDG, UDN} GraphKind; //{有向图,有向网,无向图,无向网} typedef en...
  • hustspy1990
  • hustspy1990
  • 2010-11-29 19:43
  • 2405

最小生成树之Prim(普里姆)算法

最小生成树之Prim(普里姆)算法
  • u012965373
  • u012965373
  • 2015-08-11 15:18
  • 1348

邻接表实现prim

///*******linjiebiao************************* #include #include #include using namespace std; const int inf = 65535; typedef struct arcnode{///存边 ...
  • b2utyyomi
  • b2utyyomi
  • 2016-11-16 20:44
  • 286
    机器学习公众号

    关注微信公众号,专

    为机器学习入门者
    个人资料
    • 访问:230957次
    • 积分:4762
    • 等级:
    • 排名:第7226名
    • 原创:115篇
    • 转载:14篇
    • 译文:3篇
    • 评论:788条
    博客专栏
    最新评论