普里姆(Prim)算法

原创 2017年08月18日 22:36:28

普里姆(Prim)算法,和克鲁斯卡尔算法一样,是用来求加权连通图的最小生成树的算法。

1、基本思想

  对于图G4而言,V是所有顶点的集合;现在,设置两个新的集合U和T,其中U用于存放G的最小生成树中的顶点,T存放G的最小生成树中的边。
  
  从所有uЄU,vЄ(V-U) (V-U表示出去U的所有顶点)的边中选取权值最小的边(u, v),将顶点v加入集合U中,将边(u, v)加入集合T中,如此不断重复,直到U=V为止,最小生成树构造完毕,这时集合T中包含了最小生成树中的所有边。

2、普里姆算法图解

这里写图片描述

下面我们将以上面的G4图为例,来对普里姆算法进行演示(从第一个顶点A开始通过普里姆算法生成最小生成树)。

详细步骤如下:

这里写图片描述

步骤解释如下:

初始状态:V是所有顶点的集合,即V={A,B,C,D,E,F,G};U和T为空!

第1步:将顶点A加入到U中:此时,U={A}。

第2步:将顶点B加入到U中:上一步操作之后,U={A}, V-U={B,C,D,E,F,G};因此,边(A,B)的权值最小。将顶点B添加到U中:此时,U={A,B}。

第3步:将顶点F加入到U中:上一步操作之后,U={A,B}, V-U={C,D,E,F,G};因此,边(B,F)的权值最小。将顶点F添加到U中:此时,U={A,B,F}。

第4步:将顶点E加入到U中:上一步操作之后,U={A,B,F}, V-U={C,D,E,G};因此,边(F,E)的权值最小。将顶点E添加到U中: 此时,U={A,B,F,E}。

第5步:将顶点D加入到U中:上一步操作之后,U={A,B,F,E}, V-U={C,D,G};因此,(E,D)的权值最小。将顶点D添加到U中:此时,U={A,B,F,E,D}。

第6步:将顶点C加入到U中:上一步操作之后,U={A,B,F,E,D}, V-U={C,G};因此,边(D,C)的权值最小。将顶点C添加到U中: 此时,U={A,B,F,E,D,C}。

第7步:将顶点G加入到U中:上一步操作之后,U={A,B,F,E,D,C}, V-U={G};因此,边(F,G)的权值最小。将顶点G添加到U中:此时,U=V。

此时,最小生成树构造完成!它包括的顶点依次是:A B F E D C G。

下面以”邻接矩阵”为例对普里姆算法进行说明,对于”邻接表”实现的图在后面会给出相应的源码。

基本定义

// 邻接矩阵
typedef struct _graph
{
     char vexs[MAX];         // 顶点集合
    int vexnum;           // 顶点数
    int edgnum;           // 边数
    int matrix[MAX][MAX];     // 邻接矩阵
}Graph, *PGraph;
// 边的结构体
typedef struct _EdgeData
{
     char start;    // 边的起点
    char end;   // 边的终点
    int weight;  // 边的权重
}EData;

  其中Graph是邻接矩阵对应的结构体。
  vexs用于保存顶点,vexnum是顶点数,edgnum是边数;matrix则是用于保存矩阵信息的二维数组。例如,matrix[i][j]=1,则表示”顶点i(即vexs[i])”和”顶点j(即vexs[j])”是邻接点;matrix[i][j]=0,则表示它们不是邻接点。 EData是邻接矩阵边对应的结构体。

普里姆算法

#include<stdio.h>
#include<stdlib.h>
#include<malloc.h>
#include<string.h>
#define MAX 100
#define INF (~(0x1<<31))
typedef struct Graph
{
    char vexs[MAX];
    int vexnum;
    int edgnum;
    int matrix[MAX][MAX];
} Graph,*PGraph;

typedef struct EdgeData
{
    char start;
    char end;
    int weight;
} EData;
static int get_position(Graph g,char ch)
{
    int i;
    for(i=0; i<g.vexnum; i++)
        if(g.vexs[i]==ch)
            return i;
    return -1;
}

Graph* create_graph()
{
    char vexs[]= {'A','B','C','D','E','F','G'};
    int matrix[][7]=
            {
                    {0,12,INF,INF,INF,16,14},
                    {12,0,10,INF,INF,7,INF},
                    {INF,10,0,3,5,6,INF},
                    {INF,INF,3,0,4,INF,INF},
                    {INF,INF,5,4,0,INF,8},
                    {16,7,6,INF,2,0,9},
                    {14,INF,INF,INF,8,9,0}
            };
    int vlen=sizeof(vexs)/sizeof(vexs[0]);
    int i,j;
    Graph *pG;
    if((pG=(Graph*)malloc(sizeof(Graph)))==NULL)
        return NULL;
    memset(pG,0,sizeof(pG));
    pG->vexnum=vlen;
    for(i=0; i<pG->vexnum; i++)
        pG->vexs[i]=vexs[i];
    for(i=0; i<pG->vexnum; i++)
        for(j=0; j<pG->vexnum; j++)
            pG->matrix[i][j]=matrix[i][j];
    for(i=0; i<pG->vexnum; i++)
    {
        for(j=0; j<pG->vexnum; j++)
        {
            if(i!=j&&pG->matrix[i][j]!=INF)
                pG->edgnum++;
        }
    }
    pG->edgnum/=2;
    return pG;
}
void print_graph(Graph G)
{
    int i,j;
    printf("Matrix Graph: \n");
    for(i=0; i<G.vexnum; i++)
    {
        for(j=0; j<G.vexnum; j++)
            printf("%10d ",G.matrix[i][j]);
        printf("\n");
    }
}

EData* get_edges(Graph G)
{
    EData *edges;
    edges=(EData*)malloc(G.edgnum*sizeof(EData));
    int i,j;
    int index=0;
    for(i=0; i<G.vexnum; i++)
    {
        for(j=i+1; j<G.vexnum; j++)
        {
            if(G.matrix[i][j]!=INF)
            {
                edges[index].start=G.vexs[i];
                edges[index].end=G.vexs[j];
                edges[index].weight=G.matrix[i][j];
                index++;
            }
        }
    }
    return edges;
}
void prim(Graph G,int start)
{
    int min,i,j,k,m,n,sum;
    int index=0;
    char prim[MAX];
    int weight[MAX];

    prim[index++]=G.vexs[start];

    for(i=0; i<G.vexnum; i++)
        weight[i]=G.matrix[start][i];
    weight[start]=0;

    for(i=0; i<G.vexnum; i++)
    {
        //i用来控制循环的次数,每次加入一个结点,但是因为start已经加入,所以当i为start是跳过
        if(start==i)
            continue;
        j=0;
        k=0;
        min=INF;
        for(k=0; k<G.vexnum; k++)
        {
            if(weight[k]&&weight[k]<min)
            {
                min=weight[k];
                j=k;
            }
        }
        sum+=min;
        prim[index++]=G.vexs[j];
        weight[j]=0;
        for(k=0; k<G.vexnum; k++)
        {
            if(weight[k]&&G.matrix[j][k]<weight[k])
                weight[k]=G.matrix[j][k];
        }
    }
    // 计算最小生成树的权值
    sum = 0;
    for (i = 1; i < index; i++)
    {
        min = INF;
        // 获取prims[i]在G中的位置
        n = get_position(G, prim[i]);
        // 在vexs[0...i]中,找出到j的权值最小的顶点。
        for (j = 0; j < i; j++)
        {
            m = get_position(G, prim[j]);
            if (G.matrix[m][n]<min)
                min = G.matrix[m][n];
        }
        sum += min;
    }
    printf("PRIM(%c)=%d: ", G.vexs[start], sum);
    for (i = 0; i < index; i++)
        printf("%c ", prim[i]);
    printf("\n");
}
int main()
{
    Graph *pG;
    pG=create_graph();
    print_graph(*pG);
    prim(*pG,0);
}

对机器学习,人工智能感兴趣的小伙伴可以加我微信JeemyJohn,我拉你进我的机器学习群(群里很多高手哦!),或者扫描二维码!

这里写图片描述

版权声明:本文为博主原创文章,未经博主允许不得转载。

C++ 最小生成树之Prim(普里姆)算法

最小生成树之Prime(普里姆)算法 最小生成树:是在一个给定的无向图G(V,E)中求一棵树T,使得这棵树拥有图G中的所有顶点,且所有边都是来自图G中的边,并且满足整棵树的边权之和最小。 如上...

java 普里姆(Prim)算法求图的最小生成树

1. 基本思想: 设G=(V,E)是连通网,T=(U,D)是最小生成树,V,U是顶点集合,E,D是边的集合 ①若从顶点u开始构造最小生成树,则从集合V中取出顶点u放入集合U中,标记顶点v的visi...
  • yxmmao
  • yxmmao
  • 2016年06月04日 22:05
  • 328

普里姆(Prim)算法

从连通网N=(U,E)中找最小生成树T=(U,TE) 。 ⑴ 若从顶点v0出发构造,U={v0},TE={}; ⑵ 先找权值最小的边(u,v),其中u∈U且v∈V-U,并且子图不构成环,则U= U...

普里姆算法(Prim)

普里姆(Prim)算法是一种构造性算法。假设G=(V,E)G=(V,E)是一个具有nn个顶点的带权连通图,T=(U,TE)T=(U,TE)是GG的最小生成树,其中UU是TT的顶点集,TETE是TT的边...
  • sanqima
  • sanqima
  • 2015年10月05日 22:26
  • 392

最小生成树之Prim(普里姆)算法

最小生成树之Prim(普里姆)算法

求最小生成树,普里姆(Prim)算法

1、 相关概念 1)生成树 一个连通图的生成树是它的极小连通子图,在n个顶点的情形下,有n-1条边。生成树是对连通图而言的,是连同图的极小连通子图,包含图中的所有顶点,有且仅有n-1...

普里姆算法(prim)的实现

从单一顶点开始,普里姆算法按照以下步骤逐步扩大树中所含顶点的数目,直到遍及连通图的所有顶点。 输入:一个加权连通图,其中顶点集合为V,边集合为E;初始化:Vnew = {x},其中x为集合V中的...

普里姆(prim)算法

Prim算法 普里姆算法(Prim算法)思想 普里姆算法基本思想是以顶点为主导地位:从起点出发,通过选择当前可用的最小权值边依次把其他顶点加入到生成树当中。 下面对算法的图例描述 ...
内容举报
返回顶部
收藏助手
不良信息举报
您举报文章:普里姆(Prim)算法
举报原因:
原因补充:

(最多只允许输入30个字)