[置顶] 机器学习面试题

标签: 机器学习面试题
240人阅读 评论(0) 收藏 举报
分类:

目前我整理了一些机器学习面试题,欢迎大家留言给出正确答案!

1、LR为什么用sigmoid函数。这个函数有什么优点和缺点?为什么不用其他函数?

2、决策树如何防止过拟合

3、KKT条件用哪些,完整描述

4、L1正则为什么可以把系数压缩成0,坐标下降法的具体实现细节.

5、Python如何定义一个私有变量

6、说一下进程和线程

7、K-means聚类个数选择,做什么样的试验来确定K

8、有哪些线程安全的函数

9、数据库中主键、索引和外键。以及作用

10、SVM怎么防止过拟合

11、SVM原问题和对偶问题关系?

12、线程安全的理解

13、为什么L1正则可以实现参数稀疏,而L2正则不可以?

14、spark原理

0
0

查看评论
* 以上用户言论只代表其个人观点,不代表CSDN网站的观点或立场
    我的公众号

    关注微信公众号,专

    为机器学习入门者
    个人资料
    • 访问:146327次
    • 积分:3350
    • 等级:
    • 排名:第10749名
    • 原创:86篇
    • 转载:6篇
    • 译文:4篇
    • 评论:765条
    博客专栏
    最新评论