当前搜索:

Sckit-learn之朴素贝叶斯

1. 朴素贝叶斯方法概述      朴素贝叶斯方法是一系列有监督学习算法组成的,这些算法基于应用贝叶斯理论并带有“naive”的假设:所有特征之间两两独立。给定一个类变量 yy 和一个独立的特征向量集 x1x_1 到 xnx_n。贝叶斯理论阐述如下的关系式: ![这里写图片描述](http://scikit-learn.org/stable/_images/math/475...
阅读(630) 评论(4)

Redis源码分析(1)-底层数据结构SDS

1. Redis概述      Redis是一个Key-Value存储的NoSQL内存数据库。它支持支持五种数据类型:字符串,链表,字典(hash表),集合,有序集合。每一种数据结构都有自己独特的存储与设计方式,以保证Redis高效的数据存储和查找。2. 字符串      Redis是使用C语言编写的,但是它并没有C语言传统的字符串表示,而是创建了一种名为简单动态字符串(Simple Dynamic...
阅读(742) 评论(3)

VS2015+opencv2.4.13无本地依赖配置

1. 无本地依赖的解释及其必要性1.1 什么叫无本地依赖        在Windows系统中,对于常用的开源库,我们通常都喜欢将其编译成DLL。然后保存在某个目录下,最后将该目录添加到 Path 环境变量来达到在本机上对该DLL引用的一劳永逸的方法。这种方法对于学术人员做实验分析来说确实是一种比较方便的做法,但是如果是做一个可移植的系统的话,这种方式就很不靠谱!因为,这个程序只能在你的系统上运行,...
阅读(610) 评论(9)

算法面试题整理

1. 给出一个正整数,将该整数分解成质因数相乘的形式,例如n=56,它的质因数相乘的结果是:2*2*2*7。#include using namespace std; int main() { int n; cin >> n; while (n > 1) { int i; for (i = 2; i < n; i++) {...
阅读(524) 评论(8)

Github创建仓库上传代码

1. 注册账号创建仓库注册账号很简单,首先进入GitHub主站网页https://github.com/ 如下图片所示: 注册成功之后就可以创建代码仓库了,在页面上方用户菜单上选择 “+”->New repository 创建一个新的仓库:之后就可以为仓库创建一个名字,一般取一个项目相关的名字:至此,这样仓库就创建完了2. 安装git客户端GitHub只是一个git服务器,想要将自己的代码上传到...
阅读(509) 评论(5)

Sckit-learn之数据预处理

1. 数据预处理在机器学习中的重要性      在Scikit-learn中的sklearn.preprocessing包提供了一些公共的实用函数和转换类来将特征行向量转换成更适合于接下来的估计的表示。       对于Scikit-learn中实现的许多机器学习估计来说,对数据集进行规范化是一个通用的需求。如果个别的特征或多或少的不服从与通常的数据分布:例如标准正态分布(均值为0,方差为1),这...
阅读(660) 评论(4)

Scikit-learn实战之聚类-Kmeans

1. 聚类模块的简述       在Scikit-learn中,对于未标记数据的执行聚类需要使用 sklearn.cluster 模块。        每一个聚类算法有两个变量组成:一个是类,它实现了 fit 方法从未标记的训练数据中学习类簇;还有一个就是函数,该函数的功能就是给它一批训练数据,它能够返回与每一批训练数据相对应的类标的结果的整数集合。对于类来说,基于训练数据的类标能够从label...
阅读(809) 评论(3)

Java 经验总结

尽量不要在IDEA上往同一个Tomcat上部署两个war包,这样容易产生冲突。 安装Tomcat时尽量选择低版本的JRE,因为低版本的JDK无法运行在基于高版本的Tomcat环境中,此时会出现难以发现和解决的Bug。 Java Jackson库进行序列化时,类的所有属性必须具有共有的get和set方法,否则无法进行序列化。 解决上传文件时服务端中文文件名乱码问题:对文件名做了如下转码就得到原文件名了...
阅读(331) 评论(2)

C/C++语言宏定义使用详解

1. #ifndef 防止头文件重定义在一个大的软件工程里面,可能会有多个文件同时包含一个头文件,当这些文件编译链接成 一个可执行文件时,就会出现大量“重定义”的错误。在头文件中实用#ifndef #define #endif能避免头文件的重定义。方法:例如要编写头文件test.h 在头文件开头写上两行:#ifndef TEST_H #define TEST_H //一般是文件名的大写头文件结尾...
阅读(619) 评论(4)

[置顶] Scikit-learn实战之SVM回归分析、密度估计、异常点检测

1. SVM回归       SVM的支持向量的方法能够被扩展以解决回归问题。这种方法被称之为SVR(Support Vector Regression 支持向量回归)。该模型是由SVC(支持向量分类)演化而来,它依然依赖于训练数据的子集。因为构建Model的损失函数并不关心位于边缘上的训练点(样本)集。类似的,由支持向量回归(SVR)生成的模型仅仅依赖于训练数据的某个子集,因为构建模型的损失函数忽...
阅读(3217) 评论(4)

[置顶] Scikit-learn实战之SVM分类

Support vector machines (SVMs) 是一系列的有监督的学习方法,主要用于分类、回归和异常点检测。1. SVM的主要优点如下: 在高维空间有效; 当样本空间的维度比样本数高时任然有效; 使用训练样本的子集构建决策函数(这些样本点被称之为支持向量),因此它的内存效率很高; SVM是一个全能型的机器学习算法:可以指定不同的核函数的决策函数,提供了常见的核函数,但是也可以指定自定义...
阅读(4000) 评论(8)

算法

本文版权归原作者、译者所有,我只是转贴;如果侵害到您的权益,请联系我,我将删除本文。 基本上,这文章可以说是最佳A*算法文档。极力推荐! Amit's A star Page中译文   译序 这篇文章很适合A*算法的初学者,可惜网上没找到翻译版的。本着好东西不敢独享的想法,也为了锻炼一下英文,本人译了这篇文章。 由于本人英文水平非常有限,六级考了两次加一块不超过370分,因此本译文难免...
阅读(1105) 评论(3)

Kafka

一、Kafka简介 1.1 背景历史 当今社会各种应用系统诸如商业、社交、搜索、浏览等像信息工厂一样不断的生产出各种信息,在大数据时代,我们面临如下几个挑战: 如何收集这些巨大的信息 如何分析它 如何及时做到如上两点 以上几个挑战形成了一个业务需求模型,即生产者生产(produce)各种信息,消费者消费(consume)(处理分析)这些信息,而在生产者与消费者之间,需要...
阅读(384) 评论(7)

Linux静态库与动态库详解

1. Linux 下静态链接库编译与使用 首先编写如下代码: // main.c #include "test.h" int main(){ test(); return 0; }// test.h #include using namespace std; void test();// test.c #include "test.h" void te...
阅读(379) 评论(9)

基于OpenCV的Gabor变换及特征提取

一、Gabor变换概述    Gabor变换是一种加窗短时Fourier变换(Window Fourier transform or Short Time Fourier Transform)。Fourier变换是整体上将信号分解为不同的频率分量(任何信号都可分解为复正弦信号之和),对确定性信号及平稳信号使用。其缺点为缺乏时间的局部性信息,并且对时变信号、非平稳信号的分析存在严重不足,(1)...
阅读(2153) 评论(8)
115条 共6页首页 上一页 ... 6
    我的公众号

    关注微信公众号,专

    为机器学习入门者
    个人资料
    • 访问:177394次
    • 积分:3825
    • 等级:
    • 排名:第9475名
    • 原创:96篇
    • 转载:16篇
    • 译文:3篇
    • 评论:781条
    博客专栏
    最新评论