CSDN博客积分规则

1、博客积分规则      博客积分是CSDN对用户努力的认可和奖励,也是衡量博客水平的重要标准。博客等级也将由博客积分唯一决定。积分规则具体如下: 每发布一篇原创或者翻译文章:可获得10分; 每发布一篇转载文章:可获得2分; 博主的文章每被评论一次:可获得1分; 每发表一次评论:可获得1分(自己给自己评论、博主回复评论不获得积分); 博文阅读次数每超过100次:可获得1分,阅读加分最高加到100分...
阅读(453) 评论(8)

[置顶] Isolation Forest算法实现详解

本文算法完整实现源码已开源至本人的GitHub(如果对你有帮助,请给一个 star ),参看其中的 iforest 包下的 IForest 和 ITree 两个类: https://github.com/JeemyJohn/AnomalyDetection前言       本文介绍的 Isolation Forest 算法原理请参看我的博客:Isolation Forest异常检测算法原理详解,本文...
阅读(1814) 评论(12)

[置顶] Isolation Forest算法原理详解

本文只介绍原论文中的 Isolation Forest 孤立点检测算法的原理,实际的代码实现详解请参照我的另一篇博客:Isolation Forest算法实现详解。       或者读者可以到我的GitHub上去下载完整的项目源码以及测试代码(源代码程序是基于maven构建): https://github.com/JeemyJohn/AnomalyDetection。前言       随着机器学习...
阅读(2897) 评论(24)

Win10 64bit下安装GPU版Tensorflow+Keras

Tensorflow和Keras都是支持Python接口的,所以本文中说的都是搭建一个Python的深度学习环境。        Keras是对Tensorflow或者Theano的再次封装,也就是以Tensorflow或Theano为后端,默认的后端是tensorflow,如果你想使用theano为后端,可以更改为theano。Keras为什么要对tensorflow和theano进行再次封装,当...
阅读(782) 评论(11)

[置顶] 机器学习中的数据不平衡解决方案大全

在机器学习任务中,我们经常会遇到这种困扰:数据不平衡问题。       数据不平衡问题主要存在于有监督机器学习任务中。当遇到不平衡数据时,以总体分类准确率为学习目标的传统分类算法会过多地关注多数类,从而使得少数类样本的分类性能下降。绝大多数常见的机器学习算法对于不平衡数据集都不能很好地工作。       本文介绍几种有效的解决数据不平衡情况下有效训练有监督算法的思路:1、重新采样训练集...
阅读(17557) 评论(37)

Jedis操作Redis技巧详解

对于Redis的部署模式有两种,单机模式 和 集群模式。因此,本文的介绍也从这两个方面进行介绍。众所周知,Jedis是最著名的Redis java客户端操作类库,几乎支持所有的Redis操作。本文就是要介绍Jedis API如何操作两种模式下的Redis数据库,以及相关的操作技巧。      本文介绍的全都是基于maven的管理方式建立的Java项目。首先,为了Java程序中使用Jedis API,...
阅读(717) 评论(14)

程序化广告欺诈流量过滤方法

打击虚假流量需各方携手,解决流量欺诈问题仅依靠广告验证是远远不够的,广告验证能够帮助广告主和行业指出问题所在,还需要供应链上的各方共同努力,携手打造反作弊生态圈。1、DSP(需求方平台,Demand-Side Platform)       DSP作为需求方平台,要真正站在广告主的需求和利益角度,从技术、数据、算法和团队四个维度出发,对作弊流量、问题流量和可疑流量进行主动屏蔽和过滤;在此基础上,形成...
阅读(439) 评论(2)
    个人资料
    • 访问:99940次
    • 积分:2769
    • 等级:
    • 排名:第12997名
    • 原创:74篇
    • 转载:6篇
    • 译文:4篇
    • 评论:722条
    我的公众号

    博客专栏
    最新评论