[置顶] SVM为什么走下“神坛”?

点题:学界发现真理,产业界利用趋势。“神人”就是既发现了真理又掌握了趋势(To find the truth of nature in academic, and to make business and profits by following the trend of technologies in industries.)。 1、历史的惊人巧合  曾几何时,SVM在神经网络研究和应用中几乎无...
阅读(3021) 评论(9)

普里姆(Prim)算法

普里姆(Prim)算法,和克鲁斯卡尔算法一样,是用来求加权连通图的最小生成树的算法。1、基本思想  对于图G4而言,V是所有顶点的集合;现在,设置两个新的集合U和T,其中U用于存放G的最小生成树中的顶点,T存放G的最小生成树中的边。      从所有uЄU,vЄ(V-U) (V-U表示出去U的所有顶点)的边中选取权值最小的边(u, v),将顶点v加入集合U中,将边(u, v)加入集合T中,如...
阅读(358) 评论(0)

数据挖掘中的利器--XGBoost理论篇

XGBoost是各种数据挖掘或机器学习算法类比赛中每个团队都会使用且精度相对最好的算法之一(Deep Learning算法除外)。也就是说,对于刚转向机器学习领域的同胞们,在掌握数据挖掘的基本常识概念之后,要想在比赛中有所收获,掌握XGBoost算法也是当务之急。1、XGBoost算法优点  XGBoost 是 Extreme Gradient Boosting的简称。它是Gradient Boo...
阅读(1892) 评论(3)

[置顶] 深度学习入门

0、引言 近几年来人工智能越来越火,大家都已经知道了AlphaGo的威力,然而在其背后,从技术层面来说,深度学习功不可没。那么深度学习到底是什么,其与传统的机器学习之间又有什么样的关联。对于想入坑深度学习的同学,又该从哪些方面入手。这就是本文要回答的问题。 1、深度学习的提出  先从深度学习的提出开始说起,深度学习的概念是由Hinton在2006年提出,他当时首次提出了深度信念网络(DBN),相...
阅读(3798) 评论(0)

朴素贝叶斯算法详解

1. 引言     朴素贝叶斯算法(Naive Bayes)是机器学习中常见的基本算法之一,主要用来做分类任务的。它是基于贝叶斯定理与条件独立性假设的分类方法。对于给定的训练数据集,首先基于特征条件独立性假设学习输入/输出的联合概率分布,然后基于此模型,对于给定的输入 xx 利用贝叶斯定理求出后验概率最大的输出 yy 。      基于以上的解释,我们知道:1. 该算法的理论核心是贝叶斯定理;...
阅读(687) 评论(0)
    我的公众号

    关注微信公众号,专

    为机器学习入门者
    个人资料
    • 访问:146410次
    • 积分:3352
    • 等级:
    • 排名:第10749名
    • 原创:86篇
    • 转载:6篇
    • 译文:4篇
    • 评论:765条
    博客专栏
    最新评论