股票利益最大化

1. 题目给出一个包含N个元素的数组,数组中的每个元素代表每一天的股票的买卖价格。现在给你个任务是在任意的时刻先买股票,之后卖出股票。要求是使得买卖股票的利益最大化,算法的时间和空间复杂度尽可能达到最优。2. 解题思路...
阅读(16) 评论(0)

[置顶] XGBoost参数调优完全指南

1. 简介如果你的预测模型表现得有些不尽如人意,那就用XGBoost吧。XGBoost算法现在已经成为很多数据工程师的重要武器。它是一种十分精致的算法,可以处理各种不规则的数据。 构造一个使用XGBoost的模型十分简单。但是,提高这个模型的表现就有些困难(至少我觉得十分纠结)。这个算法使用了好几个参数。所以为了提高模型的表现,参数的调整十分必要。在解决实际问题的时候,有些问题是很难回答的——你...
阅读(41) 评论(0)

[置顶] 数据挖掘中的数据清洗方法大全

在数据挖掘领域,经常会遇到的情况是挖掘出来的特征数据存在各种异常情况,如 数据缺失 、数据值异常 等。对于这些情况,如果不加以处理,那么会直接影响到最终挖掘模型建立后的使用效果,甚至是使得最终的模型失效,任务失败。所以对于数据挖掘工程师来说,掌握必要的数据清洗方法是很有必要的!      接下来本文就依次讲解如何处理 数据值缺失 和 数据值异常 两种情况的处理。1. 缺失值的处理  如下...
阅读(19) 评论(0)

[置顶] 从损失函数的角度详解常见机器学习算法

先记下,后续有时间再补上...
阅读(32) 评论(0)

[置顶] Scikit-Learn实战之——交叉验证

本文将从以下几个方面进行介绍: 简单地讲训练集/测试集分割进行模型验证的缺点; K折交叉验证的做法和优点; 交叉验证如何用于选择调节参数、选择模型、选择特征; 对交叉验证进行升级。 1. 为什么要进行模型验证  众所周知,在机器学习与数据挖掘中进行模型验证的一个重要目的是要选出一个最合适的模型。对于有监督学习而言,我们希望模型对于未知数据具有很强的泛化能力,所以就需要模型验证这一过程来评估不同的模型...
阅读(251) 评论(1)

[置顶] 史上最详细的XGBoost实战

0. 环境介绍 Python 版 本: 3.6.2 操作系统  : Windows 集成开发环境: PyCharm 1. 安装Python环境 安装Python首先,我们需要安装Python环境。本人选择的是64位版本的Python 3.6.2。去Python官网https://www.python.org/选择相应的版本并下载。如下如所示: 接下来安装,并最终选择将Python加入环境变量中...
阅读(2651) 评论(8)

[置顶] 机器学习面试题

目前我整理了一些机器学习面试题,欢迎大家留言给出正确答案!1、LR为什么用sigmoid函数。这个函数有什么优点和缺点?为什么不用其他函数?2、决策树如何防止过拟合3、KKT条件用哪些,完整描述4、L1正则为什么可以把系数压缩成0,坐标下降法的具体实现细节.5、Python如何定义一个私有变量6、说一下进程和线程7、K-means聚类个数选择,做什么样的试验来确定K8、有哪些线程安全的函数9、数据库...
阅读(239) 评论(0)
    我的公众号

    关注微信公众号,专

    为机器学习入门者
    个人资料
    • 访问:146046次
    • 积分:3348
    • 等级:
    • 排名:第10820名
    • 原创:86篇
    • 转载:6篇
    • 译文:4篇
    • 评论:765条
    博客专栏
    最新评论