保角映射

原创 2015年11月21日 20:12:41

切映射

这一段我并看不懂,基本上照搬北京大学出版社谭小江、伍胜健《复变函数简明教程》

  • 切空间p=(0,0)R2的原点,l:t(x(t),y(t))是过p点的一条光滑曲线,p=(x(0),y(0)),则α=(x(0),y(0))是曲线lp点的切向量。将所有经过p点的光滑曲线在p点的切向量的全体记为Tp,则TP是一个线性空间,称为R2p点的切空间
  • 如果f(x,y)=(u(x,y),v(x,y))p点邻域内到q=(0,0)点邻域内的一个可微映射,且f(0,0)=(0,0),则对过p点的光滑曲线l:t(x(t),y(t))f(l):tf((x(t),y(t))是经过q点的一条光滑曲线。β=(dudt(0),dvdt(0))f(l)q点的切向量。f:lf(l)诱导了f:αβ,从而有f:TpTq,这个映射称为切映射

ff的线性项,f对应的矩阵就是fp=(0,0)处的Jacobi矩阵

β=fα

这里写图片描述

如果利用复变量z来表示映射,那么l可以表示为z(t)=x(t)+iy(t),切向量α=z(0=x(0)+iy(0)).令f(z)=u+iv,则切映射可以表示为

f:αβ=df(z(t))dtt=0=fzz(0)+fz¯z¯(0)

这个映射是实线性的,但是不一定是复线性的。当fz¯0时,由于z¯(0),映射不再是复线性的了,即
f(c1α1+c2α2)=c1f(α1)+c2f(α2)
仅在c1,c2为实数的时候成立。

全纯切映射

如果f是解析的,那么切映射是复线性的,这时定义

Tz0={dz(0)dtz(t)z0线z(0)=z0}

称为z0点的全纯切面.

对于解析函数f,称

f:Tz0Tf(z0)

全纯切映射.

保角映射

版权声明:本文为博主原创文章,未经博主允许不得转载。

相关文章推荐

外网映射(ngrok)

  • 2017年10月27日 11:12
  • 4.06MB
  • 下载

mybatis实现继承映射

类图 有一个机动车父类,它有两个子类:Car和Bus   关系模型(t_vehicle) ORM映射有一个原则:对象模型细粒度,关系模型粗粒度。所以我们将所有的车都存储一张表里(t_vehic...

stm32 CAN重映射

  • 2017年11月07日 15:20
  • 1.42MB
  • 下载

nat123域名映射

  • 2017年11月15日 17:19
  • 139KB
  • 下载

Nginx下的反向代理实践(解决了资源映射问题和websocket问题)。

最近,实验室主站要加很多功能,这时候就需要搞反向代理了。在千辛万苦的解决了apache反向代理的一些资源问题和websocket问题后。想试试ngnix会不会也有同样的问题,经过测试,发现nginx更...

将局域资源映射

  • 2016年11月14日 17:09
  • 2KB
  • 下载

局域网端口映射利器

  • 2016年10月08日 15:16
  • 291KB
  • 下载

JPA 映射中 schema 属性的作用

这几天在迁移数据库,突然发现使用中的 A和 B 数据库 有相同的用户名,迁移后决定将 A...

Hibernate XML配置表映射实例

  • 2017年08月12日 11:29
  • 6.55MB
  • 下载
内容举报
返回顶部
收藏助手
不良信息举报
您举报文章:保角映射
举报原因:
原因补充:

(最多只允许输入30个字)