R语言——数据分析与数据挖掘在常规工作中的应用

原创 2017年01月02日 21:15:50

大纲:

1 数据质量分析
1.1 缺失值分析
1.2 异常值分析
1.3 一致性分析
2 数据特征分析
2.1 分布分析 
2.2 对比分析
2.3 统计量分析
2.4 周期性分析
2.5 贡献度分析
2.6 相关性分析
3 R语言主要数据探索函数 
3.1 统计特征函数
3.2 统计作图函数
3.3 小结
数据预处理
4.1 数据清洗
4.1.1 缺失值处理
4.1.2 异常值处理
4.2 数据集成
4.2.1 实体识别
4.2.2 冗余属性识别
4.3 数据变换
4.3.1 简单函数变换
4.3.2 规范化
4.3.3 连续属性离散化
4.3.4 属性构造
4.3.5 小波变换
4.4 数据规约
4.4.1 属性规约
4.4.2 数值规约
4.5 R语言主要数据预处理函数
4.6 小结65 
 挖掘建模
5.1 分类与预测
5.1.1 实现过程
5.1.2 常用的分类与预测算法
5.1.3 回归分析
5.1.4 决策树
5.1.5 人工神经网络
5.1.6 分类与预测算法评价
5.1.7 R语言主要分类与预测算法函数
5.2 聚类分析
5.2.1 常用聚类分析算法
5.2.2 K—Means聚类算法
5.2.3 聚类分析算法评价
5.2.4 R语言主要聚类分析算法函数
5.3 关联规则
5.3.1 常用关联规则算法
5.3.2 Apriori算法
5.4 时序模式
5.4.1 时间序列算法
5.4.2 时间序列的预处理
5.4.3 平稳时间序列分析
5.4.4 非平稳时间序列分析
5.4.5 R语言主要时序模式算法函数
5.5 离群点检测
5.5.1 离群点检测方法
5.5.2 基于模型的离群点检测方法
5.5.3 基于聚类的离群点检测方法
5.6 小结

版权声明:本文为博主原创文章,未经博主允许不得转载。

相关文章推荐

工作中常用的R语言函数(持续更新中……)

1、日期数据生成 seq(as.Date("2015/12/14"),by="week", length.out=62)  #按周增长 seq(as.Date("2015/12/14"),by="3 ...

R语言——数据分析的一把利剑

R语言,我把它称之为数据分析的一把利剑。

《八个案例贯通R语言数据分析与挖掘》实战培训课

【培训目标】 本次培训采取深入浅出的方法,先以简单的案例引入R数据分析的基本原理,随后重点讲解多种常用单元的功能和特性,以及有R数据分析与数据的实用技术和处理方法,紧密结合应用实例,针对工作中存在的...

R语言数据挖掘中的,“回归分析”是如何操作的?

回归分析是对多个自变量(又称为预测变量)建立一个函数来预测因变量(又称为响应变量的值)。

R 语言数据挖掘应用

  • 2014-05-20 10:17
  • 390KB
  • 下载

BI应用:数据分析和数据挖掘时代来临

经过几年的积累,大部分中大型的企事业单位已经建立了比较完善的CRM、ERP、OA等基础信息化系统。这些系统的统一特点都是:通过业务人员或者用户的操作,最终对数据库进行增加、修改、删除等操作。上述系统可...
  • e_wsq
  • e_wsq
  • 2012-06-15 19:28
  • 356

“大数据分析挖掘-基于Hadoop/Mahout/Mllib的大数据挖掘(含Spark、Storm和Docker应用介绍)”培训

目前对大数据的分析工具,首选的是Hadoop/Yarn平台。Hadoop/Yarn在可伸缩性、健壮性、计算性能和成本上具有无可替代的优势,事实上已成为当前互联网企业主流的大数据分析平台。
内容举报
返回顶部
收藏助手
不良信息举报
您举报文章:深度学习:神经网络中的前向传播和反向传播算法推导
举报原因:
原因补充:

(最多只允许输入30个字)