C/C++位操作技巧

检测一个无符号数是不为2^n-1(^为幂): x&(x+1)

将最右侧0位改为1位: x | (x+1)

 

使用位运算的无分支代码

计算绝对值 

int abs( int x )

{

 int y ;

 y = x >> 31 ;

return (x^y)-y ; //or: (x+y)^y 

}

符号函数:sign(x) = -1, x<0; 0, x == 0 ; 1, x > 0

int sign(int x)

{ return (x>>31) | (unsigned(-x))>>31 ;  //x=-2^31时失败(^为幂)

}

不使用第三方交换x,y:

1.x ^= y ; y ^= x ; x ^= y ;

2.x = x+y ; y = x-y ; x = x-y ;

3.x = x-y ; y = y+x ; x = y-x ;

4.x = y-x ; x = y-x ; x = x+y ;

位计数,统计1位的数量

1.

int pop(unsigned x)

{

x = x-((x>>1)&0x55555555) ;

x = (x&0x33333333) + ((x>>2) & 0x33333333 ) ; x = (x+(x>>4)) & 0x0f0f0f0f ;

x = x + (x>>8) ;

x = x + (x>>16) ;

return x & 0x0000003f ;

}

 2.

int pop(unsigned x)

{

static char table[256] = { 0,1,1,2, 1,2,2,3, ...., 6,7,7,8 } ;

return table[x&0xff]+table[(x>>8)&0xff]+table[(x>>16)&0xff]+table[(x>>24)] ;

}

 

奇偶性计算:

x = x ^ ( x>>1 ) ;

x = x ^ ( x>>2 ) ;

x = x ^ ( x>>4 ) ;

x = x ^ ( x>>8 ) ;

x = x ^ ( x>>16 ) ;

结果中位于x最低位,对无符号x,结果的第i位是原数第i位到最左侧位的奇偶性

 

位反转

unsigned rev(unsigned x)

{

x = (x & 0x55555555) << 1 | (x>>1) & 0x55555555 ;

x = (x & 0x33333333) << 2 | (x>>2) & 0x33333333 ;

x = (x & 0x0f0f0f0f) << 4 | (x>>4) & 0x0f0f0f0f ;

x = (x<<24) | ((x&0xff00)<<8) | ((x>>8) & 0xff00) | (x>>24) ;

return x ;

}

 

按位与(Bitwise AND),运算符号为&

a&b 的操作的结果:ab中对应位同时为1,则对应结果位也为1

例如:

10010001101000101011001111000

&             111111100000000   

---------------------------------------------

                                   10101100000000

10101100000000进行右移8位得到的是101011,这就得到了a8~15位的掩码了。那么根据这个启示,判断一个整数是否是处于 0-65535 之间(常用的越界判断):

用一般的 (a >= 0) && (a <= 65535) 可能要两次判断。

改用位运算只要一次:

a & ~((1 << 16)-1)

后面的常数是编译时就算好了的。其实只要算一次逻辑与就行了。

 

              

常用技巧: 

 

1、  用于整数的奇偶性判断 

 

一个整数a, a & 1 这个表达式可以用来判断a的奇偶性。二进制的末位为0表示偶数,最末位为1表示奇数。使用a%2来判断奇偶性和a & 1是一样的作用,但是a & 1要快好多。

 

2、  判断n是否是2的正整数冪 

 

(!(n&(n-1)) ) && n

 

举个例子:                                                 

如果n = 16 = 10000 n-1 = 1111

那么:

10000

& 1111

----------

                          0

再举一个例子:如果n = 256 = 100000000 n-1 = 11111111

那么:

100000000

&11111111

--------------

        0

好!看完上面的两个小例子,相信大家都有一个感性的认识。从理论上讲,如果一个数a他是2的正整数幂,那么的二进制形式必定为1000…..(后面有0个或者多个0),那么结论就很显然了。

 

3、  统计n1的个数 

 

朴素的统计办法是:先判断n的奇偶性,为奇数时计数器增加1,然后将n右移一位,重复上面步骤,直到移位完毕。

朴素的统计办法是比较简单的,那么我们来看看比较高级的办法。

 

举例说明,考虑2位整数 n=11,里边有21,先提取里边的偶数位10,奇数位01,把偶数位右移1位,然后与奇数位相加,因为每对奇偶位相加的和不会超过两位,所以结果中每两位保存着数n1的个数;相应的如果n是四位整数 n=0111,先以一位为单位做奇偶位提取,然后偶数位移位(右移1位),相加;再以两位为单位做奇偶提取,偶数位移位(这时就需要移2位),相加,因为此时没对奇偶位的和不会超过四位,所以结果中保存着n1的个数,依次类推可以得出更多位n的算法。整个思想类似分治法。
在这里就顺便说一下常用的二进制数: 

0xAAAAAAAA=10101010101010101010101010101010 

0x55555555 = 1010101010101010101010101010101(奇数位为11位为单位提取奇偶位 

 

0xCCCCCCCC = 11001100110011001100110011001100

0x33333333 =    110011001100110011001100110011(以“2为单位提取奇偶位) 

 

0xF0F0F0F0 = 11110000111100001111000011110000 

0x0F0F0F0F =     1111000011110000111100001111“8为单位提取奇偶位

 

0xFFFF0000 =11111111111111110000000000000000                

0x0000FFFF =                 1111111111111111“16为单位提取奇偶位

 

例如:32位无符号数的1的个数可以这样数:

int  count_one(unsigned  long  n)
{
    
// 0xAAAAAAAA,0x55555555分别是以“1位”为单位提取奇偶位
    n  =  ((n  &   0xAAAAAAAA >>   1 +  (n  &   0x55555555 );

    
// 0xCCCCCCCC,0x33333333分别是以“2位”为单位提取奇偶位
    n  =  ((n  &   0xCCCCCCCC >>   2 +  (n  &   0x33333333 );

    
// 0xF0F0F0F0,0x0F0F0F0F分别是以“4位”为单位提取奇偶位
    n  =  ((n  &   0xF0F0F0F0 >>   4 +  (n  &   0x0F0F0F0F );

    
// 0xFF00FF00,0x00FF00FF分别是以“8位”为单位提取奇偶位
    n  =  ((n  &   0xFF00FF00 >>   8 +  (n  &   0x00FF00FF );

    
// 0xFFFF0000,0x0000FFFF分别是以“16位”为单位提取奇偶位
    n  =  ((n  &   0xFFFF0000 >>   16 +  (n  &   0x0000FFFF );

    
return  n;
}

举个例子吧,比如说我的生日是农历211,就用211吧,转成二进制:

                     n = 11010011

计算n = ((n & 0xAAAAAAAA) >> 1) + (n & 0x55555555);

得到              n = 10010010

计算n = ((n & 0xCCCCCCCC) >> 2) + (n & 0x33333333);

得到              n = 00110010

计算n = ((n & 0xF0F0F0F0) >> 4) + (n & 0x0F0F0F0F);

得到              n = 00000101 -----------------à无法再分了,那么5就是答案了。


4、对于正整数的模运算注意,负数不能这么算

 

先说下比较简单的:

乘除法是很消耗时间的,只要对数左移一位就是乘以2,右移一位就是除以2,传说用位运算效率提高了60%

乘以2^k 众所周知:n<<k所以你以后还会傻傻地去敲2566*4的结果10264吗?直接2566<<4就搞定了,又快又准确。

 

除以2^k众所周知:n>>k

 

那么mod 2^k 呢?(2的倍数取模

n & ((1<<k) - 1)

用通俗的言语来描述就是,2的倍数取模,只要将数与2的倍数-1做按位与运算即可。


好!方便理解就举个例子吧。

思考:如果结果是要求模2^k时,我们真的需要每次都取模吗?

 

在此很容易让人想到快速幂取模法。

快速幂取模算法

经常做题目的时候会遇到要计算 a^b mod c 的情况,这时候,一个不小心就TLE了。那么如何解决这个问题呢?位运算来帮你吧。

 

首先介绍一下秦九韶算法:(数值分析讲得很清楚)

把一个n次多项式f(x) = a[n]x^n+a[n-1]x^(n-1)+......+a[1]x+a[0]改写成如下形式:

  f(x) = a[n]x^n+a[n-1]x^(n-1))+......+a[1]x+a[0]

  = (a[n]x^(n-1)+a[n-1]x^(n-2)+......+a[1])x+a[0]

  = ((a[n]x^(n-2)+a[n-1]x^(n-3)+......+a[2])x+a[1])x+a[0]

  =. .....

  = (......((a[n]x+a[n-1])x+a[n-2])x+......+a[1])x+a[0].

  求多项式的值时,首先计算最内层括号内一次多项式的值,即

  v[1]=a[n]x+a[n-1]

  然后由内向外逐层计算一次多项式的值,即

  v[2]=v[1]x+a[n-2]

  v[3]=v[2]x+a[n-3]

  ......

  v[n]=v[n-1]x+a[0]

这样,求n次多项式f(x)的值就转化为求n个一次多项式的值。

 

好!有了前面的基础知识,我们开始解决问题吧

(a × b) mod c=( (a mod c) × b) mod c.

我们可以将 b先表示成就:

  b = a[t] × 2^t + a[t-1]× 2^(t-1) + …… + a[0] × 2^0.  (a[i]=[0,1]).

这样我们由 a^b  mod  c = (a^(a[t] ×2^t   a[t-1] ×2^t-1+ …a[0] ×2^0) mod c.

然而我们求  a^( 2^(i+1) ) mod c=( (a^(2^i)) mod c)^2 mod c .求得。

具体实现如下:

使用秦九韶算法思想进行快速幂模算法,简洁漂亮

//  快速计算 (a ^ p) % m 的值
__int64 FastM(__int64 a, __int64 p, __int64 m)

    
if  (p  ==   0 return   1 ;
    __int64  r 
=  a  %  m;
    __int64  k 
=   1 ;
    
while  (p  >   1 )
    {
        
if  ((p  &   1 ) != 0 )
        {
            k 
=  (k  *  r)  %  m; 
}
              r 
=  (r  *  r)  %  m;
            p 
>>=   1 ;
        }
        
return  (r  *  k)  %  m;
}

 5、计算掩码

比如一个截取低6位的掩码:0×3F
用位运算这么表示:(1 << 6) - 1
这样也非常好读取掩码,因为掩码的位数直接体现在表达式里。

按位或运算很简单,只要a和b中相应位出现1,那么a|b的结果相应位也为1。就不多说了。 

6、子集

  枚举出一个集合的子集。设原集合为mask,则下面的代码就可以列出它的所有子集: 



 

  for (i = mask ; i ; i = (i - 1) & mask) ; 

  

 按位异或(xor)^ 操作

  

按位异或运算

 俗称:xor运算

 

1xor的基本知识

 

我们来看看xor运算的机理:

 

1001011001011----àa

xor    1011010001110----àb

-------------------------

      0010001000101---àc

 

看了上面的式子,体会到异或运算的原理了吧,就是:01异或0都不变,异或1则取反。很容易理解,如果b中的某位为1,那么a xor b 的作用是在a相应的位进行取反操作。用通俗易懂的语言来讲就是xor运算通常用于对二进制的特定一位进行取反操作。

我们再看到上面那个计算式子,如果得到的结果c再与b做异或运算即:

 

0010001000101---àc

xor    1011010001110---àb

----------------------------------

      1001011001011---àd

 

注意到了吧,a == d  是成立的!那么我们可以得到一个结论:(a xor b) xor b = a

同时我们还可以得到一个很诡异的swap操作:

 ^=  b;  b ^= a; a ^= b;

自己拿起笔来模拟一下就很清楚的了。

 

2xor not (按位否~)操作之间的关系

 

事实上很简单,not操作是xor操作的一个特例。取反实质上就是同1做异或操作

~x =  x^0x FFFFFFFF

 

3、两个比较有趣的式子:(n ^(n+1))  ((n ^(n-1))+1)>>1

 

1)首先来看(n ^(n+1))这个式子,假设n = 10011010 n+1 = 10011011,则:

 

10011010---àn

xor    10011011---àn+1

------------------------------------

      00000001---àans

 

如果还不能看出什么的话,再来一个例子:n = 11111111 n+1 = 100000000,则:

 

11110111---àn

xor     11111000---àn+1

-------------------------

      000001111---àans

 

得到的结果为n的倒数出现第一个0的位以及后面所有的1全部变成1,其它位都为0的数。

 

 

2)再来看看((n ^(n-1))+1)>>1这个式子

假设n = 10011010 n-1 = 10011001,则:

 

10011010---àn

xor    10011001---àn-1

-----------------------------------------

      00000011---àans

ans+1 >> 1  = 000000100 >> 1 = 000000010 

 

看出来了吧,也就是取出n出现倒数第一个1的位及该位后面的0组成的数

 

4、统计n1的奇偶性

 

思路:我们在按位与运算的时候学过了怎么计算一个整数中1的个数,但是我们现在用xor来解决吧:

=  x  ^  (x >> 1 );
=  x  ^  (x >> 2 );
=  x  ^  (x >> 4 );
=  x  ^  (x >> 8 );
=  x  ^  (x >> 16 );
return  x & 1 ;

 

说道这里,顺便提一下怎么求解一个数n的前导0的个数,下面的代码来自Hacker's Delight

int  nlz(unsigned x)
{
int  n;
if  (x  ==   0 return ( 32 );
   n  =   1 ;
   
if  ((x  >>   16 ==   0 ) {n  =  n  + 16 ; x  =  x  << 16 ;}
   
if  ((x  >>   24 ==   0 ) {n  =  n  +   8 ; x  =  x  <<   8 ;}
   
if  ((x  >>   28 ==   0 ) {n  =  n  +   4 ; x  =  x  <<   4 ;}
   
if  ((x  >>   30 ==   0 ) {n  =  n  +   2 ; x  =  x  <<   2 ;}
   n  =  n  -  (x  >>   31 );
   
return  n;
} // 代码自己慢慢理解吧

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值