趣写算法系列之--匈牙利算法

转载 2016年06月01日 11:17:51

原作在这里:http://blog.csdn.net/dark_scope/article/details/8880547

【书本上的算法往往讲得非常复杂,我和我的朋友计划用一些简单通俗的例子来描述算法的流程】


匈牙利算法是由匈牙利数学家Edmonds于1965年提出,因而得名。匈牙利算法是基于Hall定理中充分性证明的思想,它是部图匹配最常见的算法,该算法的核心就是寻找增广路径,它是一种用增广路径求二分图最大匹配的算法。

-------等等,看得头大?那么请看下面的版本:

通过数代人的努力,你终于赶上了剩男剩女的大潮,假设你是一位光荣的新世纪媒人,在你的手上有N个剩男,M个剩女,每个人都可能对多名异性有好感(惊讶-_-||暂时不考虑特殊的性取向),如果一对男女互有好感,那么你就可以把这一对撮合在一起,现在让我们无视掉所有的单相思(好忧伤的感觉快哭了),你拥有的大概就是下面这样一张关系图,每一条连线都表示互有好感。

本着救人一命,胜造七级浮屠的原则,你想要尽可能地撮合更多的情侣,匈牙利算法的工作模式会教你这样做:

===============================================================================

先试着给1号男生找妹子,发现第一个和他相连的1号女生还名花无主,got it,连上一条蓝线


===============================================================================

接着给2号男生找妹子,发现第一个和他相连的2号女生名花无主,got it


===============================================================================

接下来是3号男生,很遗憾1号女生已经有主了,怎么办呢?

我们试着给之前1号女生匹配的男生(也就是1号男生)另外分配一个妹子。

(黄色表示这条边被临时拆掉)

与1号男生相连的第二个女生是2号女生,但是2号女生也有主了,怎么办呢?我们再试着给2号女生的原配(发火发火)重新找个妹子(注意这个步骤和上面是一样的,这是一个递归的过程)


此时发现2号男生还能找到3号女生,那么之前的问题迎刃而解了,回溯回去

2号男生可以找3号妹子~~~                  1号男生可以找2号妹子了~~~                3号男生可以找1号妹子

所以第三步最后的结果就是:


===============================================================================

接下来是4号男生,很遗憾,按照第三步的节奏我们没法给4号男生出来一个妹子,我们实在是无能为力了……香吉士同学走好。

===============================================================================

这就是匈牙利算法的流程,其中找妹子是个递归的过程,最最关键的字就是“”字

其原则大概是:有机会上,没机会创造机会也要上

    bool find(int x){  
        int i,j;  
        for (j=1;j<=m;j++){    //扫描每个妹子  
            if (line[x][j]==true && used[j]==false)        
            //如果有暧昧并且还没有标记过(这里标记的意思是这次查找曾试图改变过该妹子的归属问题,但是没有成功,所以就不用瞎费工夫了)
           //used[j]意思是<strong>本次匹配过程</strong>中 女生j的归属已经确定了,不能改变
            {  
                used[j]=1;  
                if (girl[j]==0 || find(girl[j])) {   
                    //名花无主或者能腾出个位置来,这里使用递归  
                    //find(girl[j])的意思是 现在男生x要去找女生j了, 原来和女生j匹配的男生girl[j]看看能不能重新找一个其他的girl
                    girl[j]=x;  
                    return true;  
                }  
            }  
        }  
        return false;  
    }  

在主程序我们这样做:每一步相当于我们上面描述的一二三四中的一步:

    for (i=1;i<=n;i++)  
    {  
        memset(used,0,sizeof(used));    //这个在每一步中清空,即每一次匹配开始时, 之前所有的匹配都是可以改变的
        if find(i) all+=1;  
    }  



图的匹配问题与最大流问题(五)——计算二分图的最大匹配

介绍二分图最大匹配的解法,一是最大流算法来计算,二是匈牙利算法来计算,最后Java实现。...

最大流之Ford-Fulkerson方法详解及实现

最大流问题常常出现在物流配送中,可以规约为以下的图问题。最大流问题中,图中两个顶点之间不能同时存在一对相反方向的边。 边上的数字为该条边的容量,即在该条边上流过的量的上限值。最大流问题就是在...

趣写算法系列之--匈牙利算法

书本上的算法往往讲得非常复杂,我和我的朋友计划用一些简单通俗的例子来描述算法的流程】 匈牙利算法是由匈牙利数学家Edmonds于1965年提出,因而得名。匈牙利算法是基于Hall定理中充分性...

趣写算法系列之--匈牙利算法(真的很好理解)

【书本上的算法往往讲得非常复杂,我和我的朋友计划用一些简单通俗的例子来描述算法的流程】 匈牙利算法是由匈牙利数学家Edmonds于1965年提出,因而得名。匈牙利算法是基于Hall定理中充分...

趣写算法系列之--匈牙利算法

from: http://blog.csdn.net/dark_scope/article/details/8880547 【书本上的算法往往讲得非常复杂,我和我的朋友计划用一些简单通俗的例子来...
  • fyfcauc
  • fyfcauc
  • 2014年07月13日 16:41
  • 243

趣写算法系列之--匈牙利算法

【书本上的算法往往讲得非常复杂,我和我的朋友计划用一些简单通俗的例子来描述算法的流程,这只是刚开始的样稿,其实我们也才刚开始】 匈牙利算法是由匈牙利数学家Edmonds于1965年提出,因而得名。...

趣写算法系列之--匈牙利算法

【书本上的算法往往讲得非常复杂,我和我的朋友计划用一些简单通俗的例子来描述算法的流程】 匈牙利算法是由匈牙利数学家Edmonds于1965年提出,因而得名。匈牙利算法是基于Hall定理中充分...

趣写算法系列之--匈牙利算法

【书本上的算法往往讲得非常复杂,我和我的朋友计划用一些简单通俗的例子来描述算法的流程】 匈牙利算法是由匈牙利数学家Edmonds于1965年提出,因而得名。匈牙利算法是基于Hall定...

趣写算法系列之--匈牙利算法

【书本上的算法往往讲得非常复杂,我和我的朋友计划用一些简单通俗的例子来描述算法的流程】 匈牙利算法是由匈牙利数学家Edmonds于1965年提出,因而得名。匈牙利算法是基于Hall定...

趣写算法系列之--匈牙利算法 Java实现

【书本上的算法往往讲得非常复杂,我和我的朋友计划用一些简单通俗的例子来描述算法的流程】 匈牙利算法是由匈牙利数学家Edmonds于1965年提出,因而得名。匈牙利算法是基于Hall定...
内容举报
返回顶部
收藏助手
不良信息举报
您举报文章:趣写算法系列之--匈牙利算法
举报原因:
原因补充:

(最多只允许输入30个字)