关闭

平面的投影变换(2)——有几种几何变换?

769人阅读 评论(0) 收藏 举报
分类:

1. 变换群(Group)



                                      (a) 相似性变换:圆仍然是圆,正方形仍然是正方形,直线的平行和垂直属性也被保持

                                      (b) 仿射变换:圆形变为椭圆,垂直线不再垂直,而平行线仍然平行

                                      (c) 投影变换:平行线不再平行,近大远小


上图可以看到不同层次的变换,这些变换构成一个变换群,按不同层次包括:

    - 通用线性群GL(n):可逆n×n实数矩阵

    - 投影线性群PL(n):GL(n)的商群

    - 仿射群(affine group):PL(3)的子群,其最后一行为(0,0,1)

    - 欧式群(Euclidean group):仿射群的子群,左上角的2×2子阵为正交阵。

    - 有向欧式群(oriented Euclidean group):欧式群的子群,左上角的2×2子阵的行列式为1。


有些变换不是群,如透视变换,因为两个透视变换的组合是一个投影变换,而不再是透视。

某些几何属性对于某些变换具有不变性。例如:两点可分离,对于欧式变换(平移+旋转)是不变的,而对于相似性变换(平移+旋转+等方性缩放)则不是不变的。距离是欧式不变的,但不是相似性不变的。角度则对欧式变换和相似性变换都是不变的。

2. 等距变换(isometry = iso(相等) + metric(度量))

等距变换在平面变换中保持欧式距离不变。它可以表示为

             或            

其中є=±1. 如果є=1,则保持方向不变,是一个欧式变换(平移+缩放)。如果є=-1,则为反向等距变换,代表欧式变换+反射(diag(-1,1,1))。欧式变换构成一个群,反向等距变换不构成群。

其中R是一个2×2选择矩阵,它是个正交阵,即RTR =RRT =I是一个平移2维向量。欧式变换也叫做位移(displacement),它有3个自由度(1个旋转,2个平移),因此可由两对匹配点确定。

等距变换具有对长度、角度和面积的不变性。

3. 相似性变换

相似性变换 = 等距变换 + 等方性缩放,用矩阵表示为:

           或            

其中因子 表示等方性缩放。

相似性变换保持形状不变。平面相似性变换具有4个自由度,比欧式变换多一个比例因子。

相似性变换对如下属性具有不变性:角度,平行,长度比例,面积比例。

4. 仿射变换(affinity)

仿射变换 = 非奇异线性变换 + 平移,用矩阵表示为:

                                 

平面仿射变换具有6个自由度,可由3对匹配点对确定。

其中非奇异矩阵A可通过SVD分解,得到:

A = UDVT = (UVT)(VDVT) = R(θ)R(-Ф)DR(Ф)

这表示 变换可以等效为如下过程:首先对坐标进行 Ф 角度旋转,然后分别在旋转后的 和 坐标方向进行比例为 λ和 λ的缩放,然后再旋转回去,最后再进行 θ 角度旋转。

仿射变换对如下属性具有不变性:平行线,平行线段的长度比例,面积比例。而对长度比例和角度没有不变性。

5. 投影变换

投影变换是一种齐次坐标下的非奇异线性变换,它的矩阵形式为:

              或              

它有9个自由度,但只有比例意义,因此它可由8个参数定义。两个平面之间的投影变换可以由4对匹配点(其中一个平面上的任意3点不共线)决定。

投影变换最基本的不变性是互比例(cross ratio),即4个共线点之间的比例的比例。

投影变换的分解:投影变换可分解为相似性变换 HS 、仿射变换 H投影变换 HP的级联,即


或者


投影变换分解的意义在于可以简化算法。例如,当仅仅想在一幅投影平面上测量长度比例时,则只要对该图像进行HP和HA的校正就够了,因为相似性变换HS对长度比例具有不变性。

6. 总结



0
0
查看评论

平面的投影变换(1)——什么是投影变换?

研究平面投影变换的任务是对一个平面在透视摄像机上成像时产生的几何畸变进行建模。由于增加了“理想点”,我们将传统的欧式空间拓展到了投影空间。在齐次坐标系上的任何可逆的线性变换都是一个投影。沿着通过一个共同点(投影中心)的射线进行投影,叫做透视,而不是一个全投影,它只有6个自由度。通过对成像进行反变换,...
  • u014195530
  • u014195530
  • 2016-08-24 13:10
  • 3467

(18)投影变换的定义和分类

投影变换:把空间三维立体投射到投影面上得到二维平面图形的过程。 几个相关概念: 投影中心:在三维空间中,选择一个点,记该点为投影中心。 投影平面:不经过投影中心定义一个平面,记该平面为投影面。 投影线:从投影中心向投影面引任意多条射线,记这些射线为投影线。 三维物体的投影:穿过物体的投...
  • zl908760230
  • zl908760230
  • 2017-01-01 12:22
  • 770

图像处理中的投影变换(Perspective Transformation)

透视变换(Perspective Transformation)是将图片投影到一个新的视平面(Viewing Plane),也称作投影映射(Projective Mapping)。通用的变换公式为: u,v是原始图片左边,对应得到变换后的图片坐标x,y,其中。 变换矩阵可以拆成4...
  • oppo62258801
  • oppo62258801
  • 2017-11-27 10:10
  • 91

【图像处理】透视变换 Perspective Transformation

透视变换(Perspective Transformation)是将图片投影到一个新的视平面(Viewing Plane),也称作投影映射(Projective Mapping)。通用的变换公式为:u,v是原始图片左边,对应得到变换后的图片坐标x,y,其中。变换矩阵可以拆成4部分,表示线性变换,比如...
  • xiaowei_cqu
  • xiaowei_cqu
  • 2014-05-26 13:14
  • 85306

深入探索透视投影变换

深入探索透视投影变换-Twinsen编写-本人水平有限,疏忽错误在所难免,还请各位数学高手、编程高手不吝赐教-email: popyy@netease.com 透视投影是3D固定流水线的重要组成部分,是将相机空间中的点从视锥体(frustum)变换到规则观察体(Canonical View...
  • popy007
  • popy007
  • 2007-09-23 17:18
  • 78546

逆透视变换详解 及 代码实现(一)

一、世界坐标轴和摄像机坐标轴 从下图中可以看到,世界坐标为(X,Y,Z)  相机坐标为(Xc,Yc,Zc) 而世界坐标变换到相机坐标存在一个旋转矩阵变换R以及一个位移变换T。 根据上图可以得到世界坐标到相机坐标的公式变换!!         &#...
  • yeyang911
  • yeyang911
  • 2016-07-14 19:49
  • 10045

逆透视变换详解 及 代码实现(二)

根据 逆透视变换详解 及 代码实现(一)的原理 下面我用车上拍摄的车道图像,采用逆透视变换得到的图像,给出代码前我们先看下处理结果。 首先是原始图像: 下图为逆透视变换图像: 下面说具体的实现吧!! 一、参数设置: 1、需要知道相机的内部参数(这个具体步骤可以找相关文档,这里就不具...
  • yeyang911
  • yeyang911
  • 2016-07-15 10:52
  • 8848

投影变换

投影变换1 >基本概念    在计算机图形软件中所采用笛卡尔(cartesian)直角三维坐标系统,按照z轴方向的不同有两种形式:    1右手系统:当用右手握住z轴时,大姆指指向z轴的正方向(图3.20(a)),其余四个手指从x轴...
  • byxdaz
  • byxdaz
  • 2006-03-18 18:12
  • 5683

C#实现投影变换

  • 2016-03-29 15:47
  • 63KB
  • 下载

图形学复习2——几何变换

图形学复习CH4 几何变换 二维变换和三维变换 基本变换和复合变换
  • u014030117
  • u014030117
  • 2015-06-14 18:52
  • 1318
    个人资料
    • 访问:11467次
    • 积分:217
    • 等级:
    • 排名:千里之外
    • 原创:1篇
    • 转载:0篇
    • 译文:9篇
    • 评论:3条
    文章存档
    最新评论