关闭

LA 4327 Parade (DP单调队列)

标签: ACMdp
208人阅读 评论(0) 收藏 举报
分类:

题目大意:有n+1条横线,m+1条竖线,你的任务是从最南边的路走到最北边的路,使得走过的路上的高兴值和最大。同一段路不能走超过两次,且不能从北往南走,另外每条横向路上所花的时间不能超过k


分析:DP+单调队列优化。


#include <queue> 
#include <cstdio>
#include <cstring>
#include <iostream>
#include <algorithm>
#define MAXN 0x3f3f3f3f
using namespace std;
int n,m,k;
int vl[105][10005],vr[105][10005],tl[105][10005],tr[105][10005],dp[105][10005],val[105][10005],dis[105][10005];
int main()
{
	while(~scanf("%d%d%d",&n,&m,&k) && n && m)
	{
		memset(vl,0,sizeof(vl));
		memset(vr,0,sizeof(vr));
		memset(tl,0,sizeof(tl));
		memset(tr,0,sizeof(tr));
		n++;
		for(int i = 1;i <= n;i++)
		{
			for(int j = 1;j <= m;j++)
			{
		  		scanf("%d",&val[i][j]);
		  		vl[i][j] = vl[i][j-1] + val[i][j];
		  	}
		  	for(int j = m;j;j--) vr[i][j-1] = vr[i][j] + val[i][j];
		}
		for(int i = 1;i <= n;i++)
		{
			for(int j = 1;j <= m;j++)
			{
		  		scanf("%d",&dis[i][j]);
		  		tl[i][j] = tl[i][j-1] + dis[i][j];
		  	}
		  	for(int j = m;j;j--) tr[i][j-1] = tr[i][j] + dis[i][j];
		}
		int ans = -MAXN;
		for(int i = 1;i <= n;i++)
		{
			deque <int>lq;
			for(int j = 0;j <= m;j++)
			{
				dp[i][j] = -MAXN;
		 		while(!lq.empty() && dp[i-1][j] - vl[i][j] >= dp[i-1][lq.back()] - vl[i][lq.back()]) lq.pop_back();
		 		lq.push_back(j);
		 		while(!lq.empty() && tl[i][j] - tl[i][lq.front()] > k) lq.pop_front();
		 		if(!lq.empty()) dp[i][j] = dp[i-1][lq.front()] - vl[i][lq.front()] + vl[i][j];
		 	}
			deque <int>rq;
			for(int j = m;j >= 0;j--)
			{
				while(!rq.empty() && dp[i-1][j] - vr[i][j] >= dp[i-1][rq.back()] - vr[i][rq.back()]) rq.pop_back();
				rq.push_back(j);
				while(!rq.empty() && tr[i][j] - tr[i][rq.front()] > k) rq.pop_front();
			    if(!rq.empty()) dp[i][j] = max(dp[i][j],dp[i-1][rq.front()] - vr[i][rq.front()] + vr[i][j]); 
				if(i == n) ans = max(ans,dp[i][j]);
			}
		}
		cout<<ans<<endl;
	} 
}


0
0

查看评论
* 以上用户言论只代表其个人观点,不代表CSDN网站的观点或立场
    个人资料
    • 访问:63040次
    • 积分:3951
    • 等级:
    • 排名:第7933名
    • 原创:345篇
    • 转载:2篇
    • 译文:0篇
    • 评论:34条
    最新评论