【第22期】观点:IT 行业加班,到底有没有价值?

数据挖掘之支持向量机分类实现

转载 2015年07月07日 17:29:49

线性支持向量机和非线性支持向量机MATLAB实现

(1)Linear classification和nonLinear classification

clear all;
close all;
clc;
sp=[3 7;6 6;4 6;5 6.5];
nsp=size(sp);%sp的维度
sn=[1 2;3 5;7 3;3 4;6 2.7];
nsn=size(sn);
sd=[sp;sn];%将sp和sn合为一个数组,9*2
lsd=[true true true true false false true true false];%这是自己分的类
Y=nominal(lsd);
subplot(1,2,1)
    plot(sp(1:nsp,1),sp(1:nsp,2),'m+');
    hold on;
    plot(sn(1:nsn,1),sn(1:nsn,2),'c*');
subplot(1,2,2)
%sumStruce=svmtrain(sd,Y,'showplot',true);% 线性实现
%svmStruct=svmtrain(sd,Y,'Kernel_Function','quadratic','showplot',true);%非线性实现

% RD=svmclassify(svmStruct,sd,'showplot',true);%用来对数组sd进行归类

线性向量机实现


非线性向量机


举报

相关文章推荐

OpenCv学习笔记--支持向量机SVM之C++的实现(1)

(一)支持向量机SVM的介绍 1--本文尝试解决下面的问题 如何使用OpenCv中的函数CvSVM::train()训练一个SVM分类器,以及用CvSVM::predit测试训练...

支持向量机通俗导论(理解SVM的三层境界)

支持向量机通俗导论(理解SVM的三层境界) 作者:July、pluskid ;致谢:白石、JerryLead 出处:结构之法算法之道blog。 前言  ...

程序员升职加薪指南!还缺一个“证”!

CSDN出品,立即查看!

基于支持向量机SVM的文本分类的实现

SVM 文本分类算法主要分四个步骤:文本特征提取、文本特征表示、归一化处理和文本分类。

在R中使用支持向量机(SVM)进行数据挖掘(上)

在R中,可以使用e1071软件包所提供的各种函数来完成基于支持向量机的数据分析与挖掘任务。该包中最重要的一个函数就是用来建立支持向量机模型的svm()函数。我们将结合后面的例子来演示它的用法。

支持向量机简单实现

目前使用了SMO+RBF的方法实现了SVM,希望大家积极测试并反馈 界面如图所示

MATLAB支持向量机SVM代码实现

本栏目(Machine learning)包括单参数的线性回归、多参数的线性回归、Octave Tutorial、Logistic Regression、Regularization、神经网络、机器学...

支持向量机(SVM)介绍

目标 本文档尝试解答如下问题: 如何使用OpenCV函数 CvSVM::train 训练一个SVM分类器, 以及用 CvSVM::predict 测试训练结果。 什么...

支持向量机算法及其代码实现

支持向量机算法及其代码实现支持向量机(SVM),起初由vapnik提出时,是作为寻求最优(在一定程度上)二分类器的一种技术。後来它又被拓展到回归和聚类应用。SVM是一种基于核函数的方法,它通过某些核函...

手把手教你实现SVM算法(二)

一.SMO算法的原理 SMO算法和以往的一些SVM改进算法一样,是把整个二次规划问题分解为很多较易处理的小问题,所不同的是,只有SMO算法把问题分解到可能达到的最小规模:每次优化只处理两个样本的优化...

(转)支持向量机&数据挖掘

一、分类挖掘 数据挖掘是机器学习、数据库和统计学三者相结合的产物。数据挖掘首先要确定挖掘的任务或目的,确定了挖掘任务后,就要决定使用什么样的挖掘算法,选择了算法后就可以实施数据挖掘操作,获取有用的模...
收藏助手
不良信息举报
您举报文章:深度学习:神经网络中的前向传播和反向传播算法推导
举报原因:
原因补充:

(最多只允许输入30个字)