【第21期】观点:人工智能到底用 GPU?还是用 FPGA?

数据挖掘之K-means算法

原创 2015年07月09日 14:33:09

记录学习一下!

clear all;

close all;
clc;
%第一类数据
mu1=[0 0 0];
s1=[0.3 0 0;0 0.35 0;0 0 0.3];
data1=mvnrnd(mu1,s1,100);
disp(data1);
%第二类数据
mu2=[1.25 1.25 1.25];
s2=[0.3 0 0;0 0.35 0;0 0 0.3];
data2=mvnrnd(mu2,s2,100);
%第三类数据
mu3=[-1.25 1.25 -1.25];
s3=[0.3 0 0;0 0.35 0;0 0 0.3];
data3=mvnrnd(mu3,s3,100);
plot3(data1(:,1),data1(:,2),data1(:,3),'+');
hold on;
plot3(data2(:,1),data2(:,2),data2(:,3),'r+');
plot3(data3(:,1),data3(:,2),data3(:,3),'g+');
grid on;


data=[data1 data2 data3];
[u re]=kmeans(data,3);
[m n]=size(re);
disp(size(re));
hold on;
for i=1:m
    if re(i,4)==1
        plot3(re(i,1),re(i,2),re(i,3),'ro');
    elseif re(i,4)==2
        plot3(re(i,1),re(i,2),re(i,3),'go');
    else
        plot3(re(i,1),re(i,2),re(i,3),'bo');
    end
end
grid on;
版权声明:宝剑锋从磨砺出,梅花香自苦寒来 举报

相关文章推荐

数据挖掘基础:K-Means算法的原理与Python实现

数据挖掘基础:K-Means算法的原理与Python实现 原理          K-Means是一种基于样本间相似度量的间接聚类方法,属于非监督学习方法。K-Means接受参数k,将n个数据对象...

数据挖掘K-平均值(K-means)程序C实现

k平均聚类发明于1956年, 该算法最常见的形式是采用被称为劳埃德算法(Lloyd algorithm)的迭代式改进探索法。劳埃德算法首先把输入点分成k个初始化分组,可以是随机的或者使用一些启发式数据。然后计算每组的中心点,根据中心点的位置把对象分到离它最近的中心,重新确定分组。继续重复不断地计算中心并重新分组,直到收敛,即对象不再改变分组(中心点位置不再改变)。   劳埃德算法和k平均通常是紧密联系的,但是在实际应用中,劳埃德算法是解决k平均问题的启发式法则,对于某些起始点和重心的组合,劳埃德算法可能实际上收敛于错误的结果。(
  • isiqi
  • isiqi
  • 2011-12-01 21:26
  • 343

数据挖掘算法学习(一)K-Means算法

算法简介: K-Means算法是输入聚类个数k,以及包含n个数据对象的数据库,输出满足方差最小标准的k个聚类。并使得所获得的聚类满足:同一聚类中的对象相似度较高;而不同聚类中 对象相似度较小。 算...

数据挖掘-聚类分析:k-平均(k-Means)算法实现(C++)

k-Means算法主要思想:将所有特征对象划分为k个簇,每个簇至少拥有一个对象,每个对象只属于一个簇。 每个簇中的对象之间相似度最高,不同簇之间的相似度最低。 <span style="font-family: mceinli

数据挖掘案例——ReliefF和K-means算法的医学应用

【原创】数据挖掘案例——ReliefF和K-means算法的医学应用 阅读目录 1.数据挖掘与聚类分析概述 2.特征选择与聚类分析算法3.一个医学数据分析实例4.主...
收藏助手
不良信息举报
您举报文章:深度学习:神经网络中的前向传播和反向传播算法推导
举报原因:
原因补充:

(最多只允许输入30个字)