Gale-Shapley算法中 男性优势地位
即稳定配对策略对主动请求配对的一方更有利
为了证明GS算法对于主动追求着更为有利(man-optiaml, also woman-pessimal)
我们考察一个群体G=(M, F) 其中M={X, Y, Z…}, F={A, B, C…}分别表示人群中男性群体的集合和女性群体的集合
其中的字母X Y Z和A B C分别代表男性个体和女性个体
简要介绍一下Gale Shapley算法的主要思路:[求婚-拒绝模型]
在拥有n个男性和n个女性的总人数为2n的人群中,每个男性在自己心目中都对n个女性进行偏好排序,即每人都将得到一张长度为女性总人数的list. 在该列表中,女性A比B排位更高,意味着该男性“比起B 更偏好A”;同理女性也对所有的男性进行如此排序。
所谓的不稳定状态就是说,在整个群体中,存在这样的配对: