Gale-Shapley算法中 男性优势地位 的证明

Gale-Shapley算法中 男性优势地位

即稳定配对策略对主动请求配对的一方更有利


为了证明GS算法对于主动追求着更为有利(man-optiaml, also woman-pessimal)

我们考察一个群体G=(M, F) 其中M={X, Y, Z…}, F={A, B, C…}分别表示人群中男性群体的集合和女性群体的集合

其中的字母X Y Z和A B C分别代表男性个体和女性个体


简要介绍一下Gale Shapley算法的主要思路:[求婚-拒绝模型]

在拥有n个男性和n个女性的总人数为2n的人群中,每个男性在自己心目中都对n个女性进行偏好排序,即每人都将得到一张长度为女性总人数的list. 在该列表中,女性A比B排位更高,意味着该男性“比起B 更偏好A”;同理女性也对所有的男性进行如此排序。

所谓的不稳定状态就是说,在整个群体中,存在这样的配对:

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值