关闭

codeforce 577 B. Modulo Sum

标签: dp 动态规划
137人阅读 评论(0) 收藏 举报
分类:

当 n 大于 m 时,n 个数的和的种类至少有 n 种,根据鸽巢原理,n 种和 放到 m 个盒子里,必然有至少两个相同的和放到同一个盒子中。设得到这两种和的序列 为 a1,a2,……,al, 和 b1,b2,……,br,那么 bl+1,……,br 这段序列的总和必然为0 ,则结果必然存在

d当 n 小于等于 m 时, 用动态规划,相当于0/1 背包问题,对于每一个 a[i] 有要或者不要两种选择,设 dp[i][j]表示前 i 个数的和模 m 为 j ,那么对于每一个 a[i],如果不加入序列,则 前 i 个数序列的和 跟前 i-1 个数序列的和一样,则 dp[i][j] = dp[i-1][j],如果第 i 个数 a[i]要,则 dp[i][(j+a[i])%m] = 1.

初始化,dp[i][a[i]%m] = 1 ,相当于前 i 个数的序列都只取 当前的第 i 个数

代码如下

#include <iostream>
using namespace std;
int dp[2000][1000],a[1000000];
int main() 
{
	int n,m,i,j;
	scanf("%d%d",&n,&m);
	for(i=0;i<n;++i)
		scanf("%d",&a[i]);
	if(n>m)
	{
		cout<<"YES";
		return 0;
	}
	dp[0][a[0]%m] = 1;
	for(i=1;i<n;++i)
	{
		dp[i][a[i]%m] = 1;
		for(j=0;j<m;++j)
		{
			if(dp[i-1][j])
			{
				dp[i][(j+a[i])%m] = 1;
				dp[i][j] = dp[i-1][j];
			}
		}
	}
	for(i=0;i<n;++i)
	{
		if(dp[i][0]==1)
		{
			cout<<"YES";
			return 0;
		}
	}
	cout<<"NO";
	return 0;
}


0
0

查看评论
* 以上用户言论只代表其个人观点,不代表CSDN网站的观点或立场
    个人资料
    • 访问:3517次
    • 积分:255
    • 等级:
    • 排名:千里之外
    • 原创:23篇
    • 转载:0篇
    • 译文:0篇
    • 评论:0条
    文章分类
    文章存档