# Physical Examination

Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)
Total Submission(s): 5915    Accepted Submission(s): 1656

Problem Description
WANGPENG is a freshman. He is requested to have a physical examination when entering the university.
Now WANGPENG arrives at the hospital. Er….. There are so many students, and the number is increasing!
There are many examination subjects to do, and there is a queue for every subject. The queues are getting longer as time goes by. Choosing the queue to stand is always a problem. Please help WANGPENG to determine an exam sequence, so that he can finish all the physical examination subjects as early as possible.

Input
There are several test cases. Each test case starts with a positive integer n in a line, meaning the number of subjects(queues).
Then n lines follow. The i-th line has a pair of integers (ai, bi) to describe the i-th queue:
1. If WANGPENG follows this queue at time 0, WANGPENG has to wait for ai seconds to finish this subject.
2. As the queue is getting longer, the waiting time will increase bi seconds every second while WANGPENG is not in the queue.
The input ends with n = 0.
For all test cases, 0<n≤100000, 0≤ai,bi<231.

Output
For each test case, output one line with an integer: the earliest time (counted by seconds) that WANGPENG can finish all exam subjects. Since WANGPENG is always confused by years, just print the seconds mod 365×24×60×60.

Sample Input
5 1 2 2 3 3 4 4 5 5 6 0

Sample Output
1419
Hint
In the Sample Input, WANGPENG just follow the given order. He spends 1 second in the first queue, 5 seconds in the 2th queue, 27 seconds in the 3th queue, 169 seconds in the 4th queue, and 1217 seconds in the 5th queue. So the total time is 1419s. WANGPENG has computed all possible orders in his 120-core-parallel head, and decided that this is the optimal choice.

Source

a1 b1

a2 b2

a1 + a1*b2 + a2 <= a2 + a2*b1 + a1

AC代码：

#include <cstdio>
#include <cstring>
#include <algorithm>
using namespace std;

const int mo=365*24*60*60;
const int maxn=100010;

struct fun
{
__int64 a,b;
}node[maxn];

bool cmp(fun a, fun b)
{
return a.a*b.b<b.a*a.b;
}

int main()
{
int n, i, j;
while(scanf("%d", &n), n)
{
for(i = 0; i<n; i++)
{
scanf("%I64d %I64d", &node[i].a, &node[i].b);
}
sort(node, node+n, cmp);
__int64 ans = 0, tem = 0;
for(i = 0; i<n; i++)
{
ans+=(node[i].a+tem*node[i].b)%mo;
ans%=mo;
tem = ans;
}
printf("%I64d\n", ans);
}
return 0;
}  

a1 b1

a2 b2

a1 + a1*b2 + a2 <= a2 + a2*b1 + a1

a1  b1

a2  b2

a3  b3

#include<iostream>
#include<cstdlib>
#include<vector>
#include<map>
#include<cstring>
#include<set>
#include<string>
#include<algorithm>
#include<sstream>
#include<ctype.h>
#include<fstream>
#include<string.h>
#include<stdio.h>
#include<math.h>
#include<stack>
#include<queue>
#include<ctime>
//#include<conio.h>
using namespace std;

const int INF_MAX=0x7FFFFFFF;
const int INF_MIN=-(1<<30);

const double eps=1e-10;
const double pi=acos(-1.0);

#define pb push_back   //a.pb( )
#define chmin(a,b) ((a)<(b)?(a):(b))
#define chmax(a,b) ((a)>(b)?(a):(b))

template<class T> inline T gcd(T a,T b)//NOTES:gcd(
{if(a<0)return gcd(-a,b);if(b<0)return gcd(a,-b);return (b==0)?a:gcd(b,a%b);}
template<class T> inline T lcm(T a,T b)//NOTES:lcm(
{if(a<0)return lcm(-a,b);if(b<0)return lcm(a,-b);return a*(b/gcd(a,b));}

typedef pair<int, int> PII;
typedef vector<PII> VPII;
typedef vector<int> VI;
typedef vector<VI> VVI;
typedef long long LL;
int dir_4[4][2]={{0,1},{-1,0},{0,-1},{1,0}};
int dir_8[8][2]={{0,1},{-1,1},{-1,0},{-1,-1},{0,-1},{1,-1},{1,0},{1,1}};
//下，左下，左，左上，上，右上，右，右下。

//******* WATER ****************************************************************

struct node {
LL a, b;
double d;
bool operator < (const node& k) const{
return a < k.a; //升序
}
};

vector<node> vn;

LL calc() {
LL mod = 365 * 24 * 60 * 60;
LL ret = 0;
LL sum = 0;
for(int i = 0; i < vn.size(); i++) {
ret = sum * vn[i].b + vn[i].a;
sum += ret;
sum %= mod;
}
return sum;
}

int main() {
int n;
node tmp;
while(scanf("%d", &n) && n) {
vn.clear();
for(int i = 0; i < n; i++) { scanf("%I64d%I64d", &tmp.a, &tmp.b); tmp.d = (double)tmp.a / (tmp.b - 1);  vn.push_back(tmp);}
//sort(vn.begin(), vn.end());
printf("%I64d\n", calc());
}
return 0;
}


• 本文已收录于以下专栏：

## 2012 金华赛区现场赛

A这道题做过几次，很简单，主要是排序 hdu 4442 #include #include #include #include #include #include using namespace st...
• caoxiaoran1202
• 2013年07月31日 10:22
• 232

## HDU-4451-Dressing （2012年金华赛区J题）

2012年金华赛区J题
• u014355480
• 2014年11月01日 13:55
• 1216

## 2017 ACM-ICPC 西安赛区 网络赛 F. Trig Function 【规律题】

2017 ACM-ICPC 西安赛区 网络赛 F. Trig Function 【规律题】 Problem Description f(cos(x))=cos(n∗x) holds for all ...
• my_sunshine26
• 2017年09月16日 19:14
• 701

## 计蒜客 17119 Trig Function（2017 ACM-ICPC 亚洲区（西安赛区）网络赛 F）

• Nemaleswang
• 2017年10月10日 22:12
• 77

## hdu4445 CRAZY TANK 2012金华赛区现场赛D题

• u011032846
• 2013年08月05日 13:13
• 1184

## 2012金华赛区小结

• qq564690377
• 2012年10月30日 23:05
• 840

## 2012 金华 现场赛

A 水题 #include #include #include using namespace std; #define mod 31536000 #define eps 1e-10 typedef...
• u013076044
• 2015年07月17日 17:13
• 557

## HDU 4453 Looploop （2012年杭州赛区现场赛A题）

1.题目描述：点击打开链接 2.解题思路：本题是伸展树的基本题型，不过由于是第一次使用这种数据结构，先补了一下BST和Treap的基础知识，然后才开始学这种数据结构。不难发现，伸展树最基本且最核心的操...
• u014800748
• 2015年08月31日 15:01
• 734

## 2012金华现场赛

• zck921031
• 2013年01月25日 10:05
• 431

## 2017 ACM-ICPC 亚洲区（西安赛区）网络赛 F

f(cos(x))=cos(n∗x) holds for all xxx. Given two integers nnn and mmm, you need to calculate the c...
• K_ona
• 2017年09月16日 23:18
• 134

举报原因： 您举报文章：HDU-4442-Physical Examination （2012年金华赛区现场赛A题） 色情 政治 抄袭 广告 招聘 骂人 其他 (最多只允许输入30个字)