关闭

基于模糊神经网络的综合评价

标签: 神经网络模糊综合评价matlab隶属度
875人阅读 评论(2) 收藏 举报
分类:

`

模糊理论

在集合论中,一个对象要么属于要么不属于一个集合,仅仅表示的是“非
此即彼”的观念。但是在现实生活中,“亦此亦彼”和不确定的现象比比皆是,比如:温水和热水,物理学中速度的快慢,天气的好与坏,年轻与年老。这些概念处于过渡状态中,相互融合,彼此之间的分界线不清晰,因此很难用精确的尺度来进行划分。这种现象就被称为是模糊现象,对于模糊概念,经典的数学理论是无法解决的。
1965 年,Zadeh以集合论为基础研究了模糊数学处理方法,提出了模糊集、隶属函数、语言变量以及模糊推理等概念,创造了新的模糊数学研究领域,为模糊性的定量描述与处理提供了一种新途径。


1.1 模糊集合
在经典的集合论中,一个对象要么属于一个集合,要么不属于一个集合,
其特征函数值要么是 1,要么是 0。

这里写图片描述

Zadeh 将普通集合论中特征函数的取值范围由{0,1}推广到闭区间[0,
1]上,并引入了模糊集和隶属函数的概念,以便于表示模糊概念和模糊概念之间存在的连续过渡特征。
模糊集合把x对集合的隶属度从只有 0 和 1,扩充为[0,1]。 Au
的值越接近于 1,则表明u隶属于 A 的程度越高,反之越接近于 0,则表示u隶属于 A的程度越低。

这里写图片描述

2.3.2 模糊系统
模糊逻辑系统是指那些与模糊概念和模糊逻辑有直接关系的系统,模糊
产生器、模糊规则库、模糊推理机和模糊化器构成了模糊逻辑关系。模糊
逻辑系统的一般构成如下图
(1)模糊产生器:将输入值一一映射为模糊子集上的点。
(2)模糊规则库:由若干模糊推理规则组成的集合称为模糊规则库。
(3)模糊推理:模糊推理根据模糊子集和模糊推理规则,运用推理方法
推理出相应的输出。
(4)反模糊化器:由于模糊推理得到的输出值为模糊值,因此反模糊化
即是将系统输出的模糊量转换为系统的数值输出。
这里写图片描述

2.3.3 隶属函数
隶属度函数是对模糊概念的定量描述。目前应用最为广泛的隶属度函数
有三角隶属函数和梯形隶属函数。

这里写图片描述

2.4 BP 神经网络
神经网络模拟生物神经系统的结构和功能,由许多简单的并行工作处理
单元组成,在不同程度上模拟大脑的信息处理机制,能够进行复杂的逻辑操作和计算能力。目前神经网络已经大量应用于医疗领域、信息领域、工程领域、经济领域的预测等领域。 神经网络具备高度的并行结构和运算能力,因而具有较好的纠错能力和快速的处理效率。此外,神经网络具备自学能力。当外界环境发生变化时,一个训练好的神经网络能够自动调整参数,解决了数学模型或规则难以处理的问题。
2.4.1 BP 神经网络的结构
神经网络主要由以下三个神经元组成:输入层、隐含层以及输出层。同
层次内的神经元之间没有任何的连接,仅与相邻的层次的神经元之间有连接但无反馈。神经网络的学习包括两部分:首先是信号的正向传输,当样本数据从输入层输入网络,通过隐含层的处理后到达输出层,输出层的输出结果将与期望输出进行比较。如果两者的误差过大,则进入误差信号的反向传递,则是神经网络的第二个步骤。误差通过隐含层向输入层传播,通过原来的路径返回,分摊给每层的神经元,修正各输出值的权值。就这样不断的通过信号的正向传播和误差的反向传递,直到网络输出的误差达到期望值。
2.4.2 BP 神经网络的学习算法
整个祌经网络的学习算法分为以下 7 个步驟:
(1)神经网络的参数设置,设定学习效率、训练函数、传输函数、期望误差
和隐含层节点数等;
(2)从训练样本中随机输入一组样本值以及对应的期望输出值;
(3)通过神经网络正向信息传递,计算各神经元的输出;
(4)计算神经网络的实际输出与期望输出值之间的误差;
(5)判断误差是否达到期望误差,若达到即结束神经网络的学习;
(6)如果误差没有达到期望误差,则继续神经网络的学习,利用反向传播,
逐层修正网络的连接权值;
(7)返回第 3 步,直至训练集的样本误差达到期望值。

4.1 模糊神经网络的优点
模糊系统和神经网络在处理对象、数据的确定性等方面都存在着差异,
他们之间性能的比较如表 4-1 所示
神经网络具有自学习的能力、并行处理能力强,但不能处理模糊的知识,因此不能很好利用专家的经验。而模糊系统善于处理不确定的信息,但在数据处理时推理速度慢、精度较低,很难实现自适应学习。 如果能够将两者有机的结合在一起,便能大大发挥各自的优势并弥补不足。将模糊化的数据输入到神经网络中,通过神经网络的学习能力提取模糊规则,使得模糊系统具备了泛化能力。使得模型不仅能够处理精确化的信息,同时也能处理模糊信息,丰富了神经网络与模糊系统的运用。

这里写图片描述


实际案例


这里写图片描述


Matlab代码

x=0:0.1:10
y=trimf(x,[0,4,7])
y1=trimf(x,[7,10,10])
plot(x,y,x,y1)
y2=trimf(x,[0,0,4])
y3=trimf(x,[4,7,10])
hold on
plot(x,y2,x,y3)

“`


这里写图片描述


还没写完,待续,后面代码 ,案例

引用块内容

0
0

猜你在找
【直播】机器学习&数据挖掘7周实训--韦玮
【套餐】系统集成项目管理工程师顺利通关--徐朋
【直播】3小时掌握Docker最佳实战-徐西宁
【套餐】机器学习系列套餐(算法+实战)--唐宇迪
【直播】计算机视觉原理及实战--屈教授
【套餐】微信订阅号+服务号Java版 v2.0--翟东平
【直播】机器学习之矩阵--黄博士
【套餐】微信订阅号+服务号Java版 v2.0--翟东平
【直播】机器学习之凸优化--马博士
【套餐】Javascript 设计模式实战--曾亮
查看评论
* 以上用户言论只代表其个人观点,不代表CSDN网站的观点或立场
    个人资料
    • 访问:13754次
    • 积分:258
    • 等级:
    • 排名:千里之外
    • 原创:11篇
    • 转载:1篇
    • 译文:0篇
    • 评论:14条
    最新评论