OpenCV人脸检测使用detectMultiScale可能会报错_CrtIsValidHeapPointer的解决方法

原创 2015年11月18日 14:49:12

运行环境:VS2012+OpenCV2.4.8。

存在问题:
在使用OpenCV的人脸检测时,用到了detectMultiScale函数,使用方法为:face_cascade.detectMultiScale( frame_gray, faces, 1.1, 2, 0|CV_HAAR_SCALE_IMAGE, cv::Size(30, 30) );
其中faces为vector,在faces这个vector释放时,会出现_CrtIsValidHeapPointer的bug。这应该是由于detectMultiScale函数封装在OpenCV的dll中,在检测到人脸后会对faces这个vector进行操作,而在该变量使用结束释放时,再次对其进行操作时,就会报错。

代码如下:

#include "stdafx.h"
#include <opencv2/opencv.hpp>
#include "opencv2/objdetect/objdetect.hpp"
#include "opencv2/highgui/highgui.hpp"
#include "opencv2/imgproc/imgproc.hpp"

#include <iostream>
#include <stdio.h>

using namespace std;
using namespace cv;

// Global variables
// Copy this file from opencv/data/haarscascades to target folder
string face_cascade_name = "F:\\opencv\\opencv\\sources\\data\\haarcascades\\haarcascade_frontalface_alt.xml";
CascadeClassifier *face_cascade;
string window_name = "Capture - Face detection";
int filenumber; // Number of file to be saved
string filename;

// Function Headers
class faceDetection
{
private:
    std::vector<Rect> faces;
public:
    faceDetection();
    ~faceDetection();
    void detectAndDisplay(Mat frame);
};
faceDetection::faceDetection()
{
}
faceDetection::~faceDetection()
{
}

// Function detectAndDisplay
void faceDetection::detectAndDisplay(Mat frame)
{
    // 报错问题所在,。
    // std::vector<Rect> faces;

    Mat frame_gray;
    Mat crop;
    Mat res;
    Mat gray;
    string text;
    stringstream sstm;

    cvtColor(frame, frame_gray, COLOR_BGR2GRAY);
    equalizeHist(frame_gray, frame_gray);

    // Detect faces
    face_cascade->detectMultiScale(frame_gray, faces, 1.1, 2, 0 | CASCADE_SCALE_IMAGE, Size(30, 30));

    // Set Region of Interest
    cv::Rect roi_b;
    cv::Rect roi_c;

    size_t ic = 0; // ic is index of current element
    int ac = 0; // ac is area of current element

    size_t ib = 0; // ib is index of biggest element
    int ab = 0; // ab is area of biggest element

    for (ic = 0; ic < faces.size(); ic++) // Iterate through all current elements (detected faces)

    {
        roi_c.x = faces[ic].x;
        roi_c.y = faces[ic].y;
        roi_c.width = (faces[ic].width);
        roi_c.height = (faces[ic].height);

        ac = roi_c.width * roi_c.height; // Get the area of current element (detected face)

        roi_b.x = faces[ib].x;
        roi_b.y = faces[ib].y;
        roi_b.width = (faces[ib].width);
        roi_b.height = (faces[ib].height);

        ab = roi_b.width * roi_b.height; // Get the area of biggest element, at beginning it is same as "current" element

        if (ac > ab)
        {
            ib = ic;
            roi_b.x = faces[ib].x;
            roi_b.y = faces[ib].y;
            roi_b.width = (faces[ib].width);
            roi_b.height = (faces[ib].height);
        }

        crop = frame(roi_b);
        resize(crop, res, Size(128, 128), 0, 0, INTER_LINEAR); // This will be needed later while saving images
        cvtColor(crop, gray, CV_BGR2GRAY); // Convert cropped image to Grayscale

        // Form a filename
        filename = "";
        stringstream ssfn;
        ssfn << filenumber << ".png";
        filename = ssfn.str();
        filenumber++;

        imwrite(filename, gray);

        Point pt1(faces[ic].x, faces[ic].y); // Display detected faces on main window - live stream from camera
        Point pt2((faces[ic].x + faces[ic].height), (faces[ic].y + faces[ic].width));
        rectangle(frame, pt1, pt2, Scalar(0, 255, 0), 2, 8, 0);
    }

    // Show image
    sstm << "Crop area size: " << roi_b.width << "x" << roi_b.height << " Filename: " << filename;
    text = sstm.str();

    putText(frame, text, cvPoint(30, 30), FONT_HERSHEY_COMPLEX_SMALL, 0.8, cvScalar(0, 0, 255), 1, CV_AA);
    imshow("original", frame);
    // waitKey();

    if (!crop.empty())
    {
        imshow("detected", crop);
        // waitKey();
    }
    else
        destroyWindow("detected");

}


// Function main
int main()
{
    faceDetection *face;
    face = new faceDetection;
    // Load the cascade
    face_cascade = new CascadeClassifier;
    if (!face_cascade->load(face_cascade_name)){
        printf("--(!)Error loading\n");
        return (-1);
    }

    // Read the image file
    Mat frame = imread("lp.jpg");

    // Apply the classifier to the frame
    if (!frame.empty()){
        face->detectAndDisplay(frame);
    }
    else{
        printf(" --(!) No captured frame -- Break!");
        //break;
    }

    int c = waitKey(1000);

    if (27 == char(c)){
       // break;
    }

    return 0;
}
版权声明:本文为博主原创文章,未经博主允许不得转载。有问题可以加微信:lp9628(注明CSDN)。 举报

相关文章推荐

Python OpenCV 解决人脸识别报错cascade.detectMultiScale error

Authored by Monana Contact me via hemonan@vip.163.com 环境:Python2.7 OpenCV3.1.0 Win-64bit我想在OpenCV...

opencv学习笔记( 3 )——face detect

opencv自带有很强大的分类器,haarcascade_frontalface_alt用于人脸分类。 电脑中的路径为:/opencv-2.4.9/data/haarcascades/haarcas...

我是如何成为一名python大咖的?

人生苦短,都说必须python,那么我分享下我是如何从小白成为Python资深开发者的吧。2014年我大学刚毕业..

opencv人脸识别--detectMultiScale函数

人脸识别--detectMultiScale函数 首先上两张图。 现在要对上面两张图进行人脸识别。 直接介绍detectMultiScale函数,分类器方面的知识请参考...

学习<opencv> CascadeClassifier::detectMultiScale 各个参数作用

CascadeClassifier::detectMultiScale(const Mat& image, vector& objects, double scaleFactor=1.1,int ...

IE在弹出层中使用空内容的Textarea时会报错的解决方法

最近在IE里使用Textarea时发现一直会报错,而且这个错误是个能导致整个浏览器奔溃的错误,查了好久发现,如果这个Textarea被放在一个blackui制作的弹出层中时,当弹出层弹出的瞬间,如果光...
  • wsxqaz
  • wsxqaz
  • 2011-09-02 13:44
  • 1732

opencv下haar方法实现对视频文件的人脸检测、跟踪

// detect_and_draw.cpp : 定义控制台应用程序的入口点。 // #include "stdafx.h" #include "cv.h" #include ...
返回顶部
收藏助手
不良信息举报
您举报文章:深度学习:神经网络中的前向传播和反向传播算法推导
举报原因:
原因补充:

(最多只允许输入30个字)