tf26: AI操盘手

原创 2017年01月24日 12:07:04


话说股票价格到底能不能预测

先来看一下<随机游走假说-Random Walk>。

随机游走假说(英语:Random walk hypothesis)是金融学上的一个假说,认为股票市场的价格,会形成随机游走模式,因此它是无法被预测的。(摘自wiki)

生成一个随机游走时间序列数据:

import random
from matplotlib import pyplot
 
random_walk = [-1 if random.random() < 0.5 else 1]
 
for i in range(1, 1000):
	random_walk.append(random_walk[i -1] + (-1 if random.random() < 0.5 else 1))
 
pyplot.plot(random_walk)
pyplot.show()

TensorFlow练习26: 使用AI替代操盘手-股价预测

上面生成的这个数据序列像不像股票走势,这个数据序列是无法有效预测的。难道股票价格真的无迹可寻吗?

不要忘了股票价格是受外界环境影响的,如公司、股人、大佬、政治、甚至太阳的活动周期等等。人是情感动物,一个人不好预测,大众的行为还是可预测的。当你的模型将所有的因素全都考虑进来,那么股价的预测是不是就可行了呢?从量子力学的角度来看,未来是测不准的,只能求出概率。记住,当你预判别人的同时,别人也在预判你(镜中镜)。

TensorFlow练习26: AI操盘手-股价预测

上图是比特币的近期走势图,这货在去年12月份经历了一次大涨,涨的过程像不像阶梯。媒体一看比特币涨了,就会大肆报道,这就吸引了投资者眼球(贪婪),如果你查这段时间的搜索趋势,你会看到比特币的搜索量明显增多了。

当然有涨就有跌,这货不可能一直涨,最后一根稻草一旦被压断,就会出现断崖式下跌(恐慌),随之而来又是一段稳定期。

比特币涨了,我该不该入手?(如果你是投资者)
比特币跌了,我该不该出手?
当你发现你问这两个问题时,就已经晚了。在金融市场,不先人一两步怎么能成。

AI操盘手

AI操盘手从复杂环境中学到交易规则,然后应用action(买、卖,憋着)反作用到环境,借助强化学习,这个AI操盘手会不断进化。

%e5%b1%8f%e5%b9%95%e5%bf%ab%e7%85%a7-2016-11-19-%e4%b8%8a%e5%8d%8810-09-08

Deep Q-learning可以从原始数据中进行端到端的学习策略。

本帖只是一个简单的示例,只是看看能不能把Deep Q-learning应用到股票交易。

首先获得一些股票数据:

from yahoo_finance import Share
import pandas as pd
 
share = Share("IBM")
stock_history = share.get_historical("1989-01-01", "2017-01-01")
ibm_df = pd.DataFrame(stock_history)
ibm_df = ibm_df.iloc[::-1]
 
ibm_df.to_csv("ibm_stock_data.csv", index=False)

TensorFlow练习26: AI操盘手header

画出每天Open指标:

TensorFlow练习26: AI操盘手

代码(AI模拟交易;reward:最大化收益):

TensorFlow练习26: AI操盘手代码还有点问题,容我在改改。

我只使用历史数据做为输入,这样是远远不够的。后续:添加更多影响股价的因素,如新闻、社交媒体、搜索趋势等等;添加多股票支持。


如果帮到你了,请赞赏支持:



版权声明:本文为博主原创文章,未经博主允许不得转载。有问题可以加微信:lp9628(注明CSDN)。

Tensorflow实例:利用LSTM预测股票每日最高价(一)

RNN与LSTM这一部分主要涉及循环神经网络的理论,讲的可能会比较简略。什么是RNNRNN全称循环神经网络(Recurrent Neural Networks),是用来处理序列数据的。在传统的神经网络...
  • mylove0414
  • mylove0414
  • 2017年02月19日 17:28
  • 36056

Tensorflow实例:利用LSTM预测股票每日最高价(二)

根据股票历史数据中的最低价、最高价、开盘价、收盘价、交易量、交易额、跌涨幅等因素,对下一日股票最高价进行预测。实验用到的数据长这个样子: label是标签y,也就是下一日的最高价。列C——I为输入特...
  • mylove0414
  • mylove0414
  • 2017年02月25日 00:10
  • 14910

自创数据集,用TensorFlow预测股票教程 !(附代码)

来源:机器之心 本文长度为4498字,建议阅读8分钟 本文非常适合初学者了解如何使用TensorFlow构建基本的神经网络。 STATWORX 团队近日从 Google Finance ...
  • tMb8Z9Vdm66wH68VX1
  • tMb8Z9Vdm66wH68VX1
  • 2017年11月15日 00:00
  • 1163

Google人工智能平台TensorFlow介绍

Google人工智能平台TensorFlow介绍 作者:雨水/家辉 日期:2016年6月19日 CSDN博客:http://blog.csdn.net/gobitan TensorFlow是什么 官方...
  • gobitan
  • gobitan
  • 2016年06月19日 14:11
  • 7550

Android-中国象棋-实时识别-实时AI

android 中国象棋 实时识别 实时AI
  • lonelyrains
  • lonelyrains
  • 2016年09月18日 23:07
  • 2828

手把手教你搭建AI开发环境 !(附代码、下载地址)

人最大的长处就是有厉害的大脑。电脑、手机等都是对人大脑的拓展。现今,我们每个人都有这个机会,让自己头脑在智能的帮助下,达到极高的高度。所以,拥抱科技,让智能产品成为我们个人智力的拓展,更好的去生活、去...
  • qq_36510261
  • qq_36510261
  • 2017年12月18日 15:09
  • 49

从原理到代码:大牛教你如何用 TensorFlow 亲手搭建一套图像识别模块 | AI 研习社

自 2015 年 11 月首次发布以来,TensorFlow 凭借谷歌的强力支持,快速的更新和迭代,齐全的文档和教程,以及上手快且简单易用等诸多的优点,已经在图像识别、语音识别、自然语言处理、数据挖掘...
  • u010159842
  • u010159842
  • 2017年05月16日 23:27
  • 984

深度强化学习入门:用TensorFlow构建你的第一个游戏AI

本文通过一种简单的 Catch 游戏介绍了深度强化学习的基本原理,并给出了完整的以 Keras 为前端的 TensorFlow 代码实现,是入门深度强化学习的不错选择。 GitHub 链接:...
  • Uwr44UOuQcNsUQb60zk2
  • Uwr44UOuQcNsUQb60zk2
  • 2017年11月17日 06:43
  • 484

tensorflow学习笔记(十九):分布式Tensorflow

分布式Tensorflow最近在学习怎么分布式Tensorflow训练深度学习模型,看官网教程看的云里雾里,最终结合着其它资料,终于对分布式Tensorflow有了些初步了解.gRPC (google...
  • u012436149
  • u012436149
  • 2016年11月12日 15:14
  • 9821

TensorFlow 为什么选择 PyThon 作为开发语言?| 社区问答

这里是AI研习社,我们的社区已经正式推出了!欢迎大家来多多交流~ mooc.ai/bbs (戳文末阅读原文直接进) 社长为你推荐来自AI研习社问答社区的精华问答。如有你也有问题,欢迎...
  • Y0W1as5eg37urFdS
  • Y0W1as5eg37urFdS
  • 2017年12月07日 00:00
  • 123
内容举报
返回顶部
收藏助手
不良信息举报
您举报文章:tf26: AI操盘手
举报原因:
原因补充:

(最多只允许输入30个字)