caffe将网络模型由protot转换成变成网络结构模型图--caffe学习(5)

原创 2017年01月02日 23:19:58

首先需要安装graphviz,再安装pydot
在conda命令下:

conda install graphviz
conda install pydot

python/draw_net.py这个文件,就是caffe官方提供的用来绘制网络模型的。也就是将网络模型由prototxt变成一张图片。
安装好了,就可以调用脚本来绘制图片了
draw_net.py执行的时候带三个参数

第一个参数:网络模型的prototxt文件

第二个参数:保存的图片路径及名字

第二个参数:–rankdir=x , x 有四种选项,分别是LR, RL, TB, BT 。用来表示网络的方向,分别是从左到右,从右到左,从上到小,从下到上。默认为LR。
通过如下命令绘制自己的网络结构流程图:

python /caffe/python/draw_net.py train.prototxt train.png --rankdir=BT

可得到网络结构图如下:
这里写图片描述
绘制经典的网络模型:
1:绘制Lenet模型

python /caffe/python/draw_net.py examples/cifar10/cifar10_full_train_test.prototxt netImage/cifar10.png --rankdir=BT

这里写图片描述
2:绘制cifar10的模型

python /caffe/python/draw_net.py examples/cifar10/cifar10_full_train_test.prototxt netImage/cifar10.png --rankdir=BT

这里写图片描述
这样可以更加直观的绘制自己的caffe模型图,便于理解

3:也可以借助已有的方法实现框图可视化:
3.1:打开网址 http://ethereon.github.io/netscope/#/editor
3.2.将自己的train_test.prototxt里的复制粘贴到左边
3.3:然后同时shift+enter运行
这里写图片描述

版权声明:本文为博主原创文章,未经博主允许不得转载。

深度学习-CAFFE利用CIFAR10网络模型训练自己的图像数据获得模型-3结合caffe中的CIFAR10修改相关配置文件并训练

分别将cifar10_quick_train_test.prototxt、cifar10_quick_solver.prototxt、train_quick.sh三个文件 copy至自己所建立的文件...

运动物体检测与跟踪——累积权重构建背景模型

运动物体检测与跟踪中的帧差分法,除了相邻帧差分法和三帧差分法外,还有一种差分方法,可以通过建立不含前景的背景模型,用当前帧和背景模型做差,差值就可以体现运动物体大概的位置和大小信息。 相比相邻帧差分法...
  • dcrmg
  • dcrmg
  • 2016年08月21日 00:25
  • 2134

Win10下Caffe模型转换成MxNet模型

默认:Python已经安装好 1.从网上下载VGG模型 http://www.robots.ox.ac.uk/~vgg/research/very_deep/ 1...

caffe网络模型各层解析

  • 2017年11月13日 21:02
  • 1024KB
  • 下载

caffe网络模型各层详解(中文版)

  • 2016年11月03日 14:24
  • 519KB
  • 下载

caffe zoo .caffemodels模型下载\通过网络结构估算caffemodel文件的大小(转载)

这里有很多模型文件,训练好的。 http://dl.caffe.berkeleyvision.org/

caffe网络模型各层详解.doc

  • 2017年11月12日 22:29
  • 480KB
  • 下载

Caffe 之 使用非图片的鸢尾花(IRIS)数据集(hdf5格式) 训练网络模型

转载自http://blog.csdn.net/shadow_guo/article/details/50382446
内容举报
返回顶部
收藏助手
不良信息举报
您举报文章:caffe将网络模型由protot转换成变成网络结构模型图--caffe学习(5)
举报原因:
原因补充:

(最多只允许输入30个字)