Proving Equivalences (hdu 2767 强联通缩点)

原创 2015年07月06日 16:43:41

Proving Equivalences

Time Limit: 4000/2000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)
Total Submission(s): 3743    Accepted Submission(s): 1374


Problem Description
Consider the following exercise, found in a generic linear algebra textbook.

Let A be an n × n matrix. Prove that the following statements are equivalent:

1. A is invertible.
2. Ax = b has exactly one solution for every n × 1 matrix b.
3. Ax = b is consistent for every n × 1 matrix b.
4. Ax = 0 has only the trivial solution x = 0. 

The typical way to solve such an exercise is to show a series of implications. For instance, one can proceed by showing that (a) implies (b), that (b) implies (c), that (c) implies (d), and finally that (d) implies (a). These four implications show that the four statements are equivalent.

Another way would be to show that (a) is equivalent to (b) (by proving that (a) implies (b) and that (b) implies (a)), that (b) is equivalent to (c), and that (c) is equivalent to (d). However, this way requires proving six implications, which is clearly a lot more work than just proving four implications!

I have been given some similar tasks, and have already started proving some implications. Now I wonder, how many more implications do I have to prove? Can you help me determine this?
 

Input
On the first line one positive number: the number of testcases, at most 100. After that per testcase:

* One line containing two integers n (1 ≤ n ≤ 20000) and m (0 ≤ m ≤ 50000): the number of statements and the number of implications that have already been proved.
* m lines with two integers s1 and s2 (1 ≤ s1, s2 ≤ n and s1 ≠ s2) each, indicating that it has been proved that statement s1 implies statement s2.
 

Output
Per testcase:

* One line with the minimum number of additional implications that need to be proved in order to prove that all statements are equivalent.
 

Sample Input
2 4 0 3 2 1 2 1 3
 

Sample Output
4 2
 

Source
 

Recommend
lcy   |   We have carefully selected several similar problems for you:  2768 2766 2769 2773 2772 
 


题意:n个点m条边,问最少添加多少条边使得整个图联通。

思路:先Tarjan求强联通分量,缩点,再求缩点后的点的入度和出度,入读为0的点的个数为a,出度为0的点的个数为b,ans=max(a,b)

代码:

#include <iostream>
#include <cstdio>
#include <cstring>
#include <algorithm>
#include <cmath>
#include <string>
#include <map>
#include <stack>
#include <vector>
#include <set>
#include <queue>
#pragma comment (linker,"/STACK:102400000,102400000")
#define mod 1000000009
#define INF 0x3f3f3f3f
#define pi acos(-1.0)
#define eps 1e-6
#define lson rt<<1,l,mid
#define rson rt<<1|1,mid+1,r
#define FRE(i,a,b)  for(i = a; i <= b; i++)
#define FREE(i,a,b) for(i = a; i >= b; i--)
#define FRL(i,a,b)  for(i = a; i < b; i++)
#define FRLL(i,a,b) for(i = a; i > b; i--)
#define mem(t, v)   memset ((t) , v, sizeof(t))
#define sf(n)       scanf("%d", &n)
#define sff(a,b)    scanf("%d %d", &a, &b)
#define sfff(a,b,c) scanf("%d %d %d", &a, &b, &c)
#define pf          printf
#define DBG         pf("Hi\n")
typedef long long ll;
using namespace std;

const int MAXN = 20050;//点数
const int MAXM = 500050;//边数

struct Edge
{
    int to,next;
}edge[MAXM];

int head[MAXN],tot;
int Low[MAXN],DFN[MAXN],Stack[MAXN],Belong[MAXN];//Belong数组的值是1~scc
int Index,top;
int scc;//强联通分量的个数
bool Instack[MAXN];
int num[MAXN];//各个强联通分量包含的点的个数,数组编号为1~scc
//num数组不一定需要,结合实际情况

void addedge(int u,int v)
{
    edge[tot].to=v;
    edge[tot].next=head[u];
    head[u]=tot++;
}

void Tarjan(int u)
{
    int v;
    Low[u]=DFN[u]=++Index;
    Stack[top++]=u;
    Instack[u]=true;
    for (int i=head[u];i+1;i=edge[i].next)
    {
        v=edge[i].to;
        if (!DFN[v])
        {
            Tarjan(v);
            if (Low[u]>Low[v]) Low[u]=Low[v];
        }
        else if (Instack[v]&&Low[u]>DFN[v])
            Low[u]=DFN[v];
    }
    if (Low[u]==DFN[u])
    {
        scc++;
        do{
            v=Stack[--top];
            Instack[v]=false;
            Belong[v]=scc;
            num[scc]++;
        }while (v!=u);
    }
}

void solve(int N)
{
    memset(DFN,0,sizeof(DFN));
    memset(Instack,false,sizeof(Instack));
    memset(num,0,sizeof(num));
    Index=scc=top=0;
    for (int i=1;i<=N;i++)      //点的编号从1开始
        if (!DFN[i])
            Tarjan(i);
}

void init()
{
    tot=0;
    memset(head,-1,sizeof(head));
}

int n,m;
int in[MAXN],out[MAXN];

int main()
{
#ifndef ONLINE_JUDGE
    freopen("C:/Users/asus1/Desktop/IN.txt","r",stdin);
#endif
    int i,j,u,v,t;
    sf(t);
    while (t--)
    {
        sff(n,m);
        if(n==1){   //特判1(n==1,m==0)
            printf("0\n");
            continue;
        }
        if(m==0){   //特判2( n==?,m==0)
            printf("%d\n",n);
            continue;
        }
        init();
        for (i=0;i<m;i++)
        {
            sff(u,v);
            addedge(u,v);
        }
        solve(n);
        if(scc==1){   //如果强连通个数为1
            printf("0\n");
            continue;
        }
        mem(in,0);
        mem(out,0);
        for (int u=1;u<=n;u++)
        {
            for (i=head[u];i+1;i=edge[i].next)
            {
                int v=edge[i].to;
                if (Belong[u]!=Belong[v])
                {
                    out[Belong[u]]++;
                    in[Belong[v]]++;
                }
            }
        }
        int ans,a=0,b=0;
        for (i=1;i<=scc;i++)
        {
            if (out[i]==0)
                a++;
            if (in[i]==0)
                b++;
        }
        ans=max(a,b);
        pf("%d\n",ans);
    }
    return 0;
}



相关文章推荐

HDU 2767-Proving Equivalences(强联通+缩点)

欢迎使用Markdown编辑器写博客本Markdown编辑器使用StackEdit修改而来,用它写博客,将会带来全新的体验哦: Markdown和扩展Markdown简洁的语法 代码块高亮 图片链接和...

HDU 2767 Proving Equivalences(强连通缩点)

题意:给出一个有向图,不一定连通,问至少加多少有向边可以使其变成连通的。 思路:先跑一遍Tarjan并进行缩点。缩完点后,得到一个DAG,设入度为0的点数位inCnt,出度为0的点数为outCnt,则...

HDU 2767 Proving Equivalences(强连通 Tarjan+缩点)

HDU 2767 Proving Equivalences(强连通 Tarjan+缩点) ACM 题目地址:HDU 2767 题意:  给定一张有向图,问最少添加几条边使得有向图成...
  • hcbbt
  • hcbbt
  • 2014年07月30日 15:40
  • 2154

hdu 2767 Proving Equivalences(强连通分量+缩点)

题意:给一个n个点,m条边的图,问最少增加多少条边,原图可以变成强连通图。 思路:分两步,第一步,求双连通分量,我使用的是tarjan算法。我尝试着解释一下:对于一个强连通图G,从它的a点出发遍历全...

hdu 2767 Proving Equivalences 强连通 缩点 求度

本题题意是 给你n个点m条边 要求如果需要将这个图变成强连通最少需要多少条边我的做法是强连通分量缩点+求度 取 max(出度为0的数量,入度为0的数量)的值就是 //First Edit Time:2...
  • CHCXCHC
  • CHCXCHC
  • 2014年05月04日 22:11
  • 472

【HDU】2767 Proving Equivalences 强连通缩点

传送门:【HDU】2767 Proving Equivalences

hdu2767Proving Equivalences(强连通+缩点)

Proving Equivalences Time Limit: 4000/2000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Ot...

hdu 2767 Proving Equivalences【强连通Kosaraju+缩点染色】

Proving Equivalences Time Limit: 4000/2000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Ot...

HDU2767Proving Equivalences(强连通+缩点+ 至少加几条边让整个图变成强连通))

题意: 至少加几条边让整个图变成强连通。 思路:对于N个点的图,我们知道至少需要N条边才能使这个图强连通,现在我们先对题目的图计算一下强连通,对于已经在一个强连通的点,把他们看做为一个点,然后对新形...

HDU 2767 Proving Equivalences (强联通)

http://acm.hdu.edu.cn/showproblem.php?pid=2767 Proving Equivalences Time Limit: 4000/2000 MS (...
内容举报
返回顶部
收藏助手
不良信息举报
您举报文章:Proving Equivalences (hdu 2767 强联通缩点)
举报原因:
原因补充:

(最多只允许输入30个字)