460人阅读 评论(0)

# Proving Equivalences

Time Limit: 4000/2000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)
Total Submission(s): 3743    Accepted Submission(s): 1374

Problem Description
Consider the following exercise, found in a generic linear algebra textbook.

Let A be an n × n matrix. Prove that the following statements are equivalent:

1. A is invertible.
2. Ax = b has exactly one solution for every n × 1 matrix b.
3. Ax = b is consistent for every n × 1 matrix b.
4. Ax = 0 has only the trivial solution x = 0.

The typical way to solve such an exercise is to show a series of implications. For instance, one can proceed by showing that (a) implies (b), that (b) implies (c), that (c) implies (d), and finally that (d) implies (a). These four implications show that the four statements are equivalent.

Another way would be to show that (a) is equivalent to (b) (by proving that (a) implies (b) and that (b) implies (a)), that (b) is equivalent to (c), and that (c) is equivalent to (d). However, this way requires proving six implications, which is clearly a lot more work than just proving four implications!

I have been given some similar tasks, and have already started proving some implications. Now I wonder, how many more implications do I have to prove? Can you help me determine this?

Input
On the first line one positive number: the number of testcases, at most 100. After that per testcase:

* One line containing two integers n (1 ≤ n ≤ 20000) and m (0 ≤ m ≤ 50000): the number of statements and the number of implications that have already been proved.
* m lines with two integers s1 and s2 (1 ≤ s1, s2 ≤ n and s1 ≠ s2) each, indicating that it has been proved that statement s1 implies statement s2.

Output
Per testcase:

* One line with the minimum number of additional implications that need to be proved in order to prove that all statements are equivalent.

Sample Input
2
4 0
3 2
1 2
1 3

Sample Output
4
2

Source

Recommend
lcy   |   We have carefully selected several similar problems for you:  2768 2766 2769 2773 2772

#include <iostream>
#include <cstdio>
#include <cstring>
#include <algorithm>
#include <cmath>
#include <string>
#include <map>
#include <stack>
#include <vector>
#include <set>
#include <queue>
#define mod 1000000009
#define INF 0x3f3f3f3f
#define pi acos(-1.0)
#define eps 1e-6
#define lson rt<<1,l,mid
#define rson rt<<1|1,mid+1,r
#define FRE(i,a,b)  for(i = a; i <= b; i++)
#define FREE(i,a,b) for(i = a; i >= b; i--)
#define FRL(i,a,b)  for(i = a; i < b; i++)
#define FRLL(i,a,b) for(i = a; i > b; i--)
#define mem(t, v)   memset ((t) , v, sizeof(t))
#define sf(n)       scanf("%d", &n)
#define sff(a,b)    scanf("%d %d", &a, &b)
#define sfff(a,b,c) scanf("%d %d %d", &a, &b, &c)
#define pf          printf
#define DBG         pf("Hi\n")
typedef long long ll;
using namespace std;

const int MAXN = 20050;//点数
const int MAXM = 500050;//边数

struct Edge
{
int to,next;
}edge[MAXM];

int Low[MAXN],DFN[MAXN],Stack[MAXN],Belong[MAXN];//Belong数组的值是1~scc
int Index,top;
int scc;//强联通分量的个数
bool Instack[MAXN];
int num[MAXN];//各个强联通分量包含的点的个数，数组编号为1~scc
//num数组不一定需要，结合实际情况

{
edge[tot].to=v;
}

void Tarjan(int u)
{
int v;
Low[u]=DFN[u]=++Index;
Stack[top++]=u;
Instack[u]=true;
{
v=edge[i].to;
if (!DFN[v])
{
Tarjan(v);
if (Low[u]>Low[v]) Low[u]=Low[v];
}
else if (Instack[v]&&Low[u]>DFN[v])
Low[u]=DFN[v];
}
if (Low[u]==DFN[u])
{
scc++;
do{
v=Stack[--top];
Instack[v]=false;
Belong[v]=scc;
num[scc]++;
}while (v!=u);
}
}

void solve(int N)
{
memset(DFN,0,sizeof(DFN));
memset(Instack,false,sizeof(Instack));
memset(num,0,sizeof(num));
Index=scc=top=0;
for (int i=1;i<=N;i++)      //点的编号从1开始
if (!DFN[i])
Tarjan(i);
}

void init()
{
tot=0;
}

int n,m;
int in[MAXN],out[MAXN];

int main()
{
#ifndef ONLINE_JUDGE
freopen("C:/Users/asus1/Desktop/IN.txt","r",stdin);
#endif
int i,j,u,v,t;
sf(t);
while (t--)
{
sff(n,m);
if(n==1){   //特判1（n==1,m==0)
printf("0\n");
continue;
}
if(m==0){   //特判2( n==?,m==0)
printf("%d\n",n);
continue;
}
init();
for (i=0;i<m;i++)
{
sff(u,v);
}
solve(n);
if(scc==1){   //如果强连通个数为1
printf("0\n");
continue;
}
mem(in,0);
mem(out,0);
for (int u=1;u<=n;u++)
{
{
int v=edge[i].to;
if (Belong[u]!=Belong[v])
{
out[Belong[u]]++;
in[Belong[v]]++;
}
}
}
int ans,a=0,b=0;
for (i=1;i<=scc;i++)
{
if (out[i]==0)
a++;
if (in[i]==0)
b++;
}
ans=max(a,b);
pf("%d\n",ans);
}
return 0;
}


1
0

* 以上用户言论只代表其个人观点，不代表CSDN网站的观点或立场
个人资料
• 访问：158834次
• 积分：5574
• 等级：
• 排名：第4877名
• 原创：261篇
• 转载：3篇
• 译文：0篇
• 评论：44条
阅读排行
最新评论