# Proving Equivalences

Time Limit: 4000/2000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)
Total Submission(s): 3743    Accepted Submission(s): 1374

Problem Description
Consider the following exercise, found in a generic linear algebra textbook.

Let A be an n × n matrix. Prove that the following statements are equivalent:

1. A is invertible.
2. Ax = b has exactly one solution for every n × 1 matrix b.
3. Ax = b is consistent for every n × 1 matrix b.
4. Ax = 0 has only the trivial solution x = 0.

The typical way to solve such an exercise is to show a series of implications. For instance, one can proceed by showing that (a) implies (b), that (b) implies (c), that (c) implies (d), and finally that (d) implies (a). These four implications show that the four statements are equivalent.

Another way would be to show that (a) is equivalent to (b) (by proving that (a) implies (b) and that (b) implies (a)), that (b) is equivalent to (c), and that (c) is equivalent to (d). However, this way requires proving six implications, which is clearly a lot more work than just proving four implications!

I have been given some similar tasks, and have already started proving some implications. Now I wonder, how many more implications do I have to prove? Can you help me determine this?

Input
On the first line one positive number: the number of testcases, at most 100. After that per testcase:

* One line containing two integers n (1 ≤ n ≤ 20000) and m (0 ≤ m ≤ 50000): the number of statements and the number of implications that have already been proved.
* m lines with two integers s1 and s2 (1 ≤ s1, s2 ≤ n and s1 ≠ s2) each, indicating that it has been proved that statement s1 implies statement s2.

Output
Per testcase:

* One line with the minimum number of additional implications that need to be proved in order to prove that all statements are equivalent.

Sample Input
2 4 0 3 2 1 2 1 3

Sample Output
4 2

Source

Recommend
lcy   |   We have carefully selected several similar problems for you:  2768 2766 2769 2773 2772

#include <iostream>
#include <cstdio>
#include <cstring>
#include <algorithm>
#include <cmath>
#include <string>
#include <map>
#include <stack>
#include <vector>
#include <set>
#include <queue>
#define mod 1000000009
#define INF 0x3f3f3f3f
#define pi acos(-1.0)
#define eps 1e-6
#define lson rt<<1,l,mid
#define rson rt<<1|1,mid+1,r
#define FRE(i,a,b)  for(i = a; i <= b; i++)
#define FREE(i,a,b) for(i = a; i >= b; i--)
#define FRL(i,a,b)  for(i = a; i < b; i++)
#define FRLL(i,a,b) for(i = a; i > b; i--)
#define mem(t, v)   memset ((t) , v, sizeof(t))
#define sf(n)       scanf("%d", &n)
#define sff(a,b)    scanf("%d %d", &a, &b)
#define sfff(a,b,c) scanf("%d %d %d", &a, &b, &c)
#define pf          printf
#define DBG         pf("Hi\n")
typedef long long ll;
using namespace std;

const int MAXN = 20050;//点数
const int MAXM = 500050;//边数

struct Edge
{
int to,next;
}edge[MAXM];

int Low[MAXN],DFN[MAXN],Stack[MAXN],Belong[MAXN];//Belong数组的值是1~scc
int Index,top;
int scc;//强联通分量的个数
bool Instack[MAXN];
int num[MAXN];//各个强联通分量包含的点的个数，数组编号为1~scc
//num数组不一定需要，结合实际情况

{
edge[tot].to=v;
}

void Tarjan(int u)
{
int v;
Low[u]=DFN[u]=++Index;
Stack[top++]=u;
Instack[u]=true;
{
v=edge[i].to;
if (!DFN[v])
{
Tarjan(v);
if (Low[u]>Low[v]) Low[u]=Low[v];
}
else if (Instack[v]&&Low[u]>DFN[v])
Low[u]=DFN[v];
}
if (Low[u]==DFN[u])
{
scc++;
do{
v=Stack[--top];
Instack[v]=false;
Belong[v]=scc;
num[scc]++;
}while (v!=u);
}
}

void solve(int N)
{
memset(DFN,0,sizeof(DFN));
memset(Instack,false,sizeof(Instack));
memset(num,0,sizeof(num));
Index=scc=top=0;
for (int i=1;i<=N;i++)      //点的编号从1开始
if (!DFN[i])
Tarjan(i);
}

void init()
{
tot=0;
}

int n,m;
int in[MAXN],out[MAXN];

int main()
{
#ifndef ONLINE_JUDGE
freopen("C:/Users/asus1/Desktop/IN.txt","r",stdin);
#endif
int i,j,u,v,t;
sf(t);
while (t--)
{
sff(n,m);
if(n==1){   //特判1（n==1,m==0)
printf("0\n");
continue;
}
if(m==0){   //特判2( n==?,m==0)
printf("%d\n",n);
continue;
}
init();
for (i=0;i<m;i++)
{
sff(u,v);
}
solve(n);
if(scc==1){   //如果强连通个数为1
printf("0\n");
continue;
}
mem(in,0);
mem(out,0);
for (int u=1;u<=n;u++)
{
{
int v=edge[i].to;
if (Belong[u]!=Belong[v])
{
out[Belong[u]]++;
in[Belong[v]]++;
}
}
}
int ans,a=0,b=0;
for (i=1;i<=scc;i++)
{
if (out[i]==0)
a++;
if (in[i]==0)
b++;
}
ans=max(a,b);
pf("%d\n",ans);
}
return 0;
}


• 本文已收录于以下专栏：

## HDU 2767 Proving Equivalences（强连通 Tarjan+缩点）

HDU 2767 Proving Equivalences（强连通 Tarjan+缩点） ACM 题目地址：HDU 2767 题意：  给定一张有向图，问最少添加几条边使得有向图成...
• hcbbt
• 2014年07月30日 15:40
• 2282

## hdu 2767 Proving Equivalences 等价性证明 强连通分量

Proving Equivalences Time Limit: 4000/2000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Ot...
• cyendra
• 2013年04月17日 15:07
• 662

## Proving Equivalences HDU - 2767

• sunyutian1998
• 2017年11月07日 10:57
• 43

## HDU 2767 Proving Equivalences

• w446506278
• 2016年07月23日 20:01
• 111

## HDU 2767 Proving Equivalences

Proving Equivalences Time Limit: 4000/2000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Ot...
• hqu_fritz
• 2014年09月17日 07:58
• 391

## HDU 2767 Proving Equivalences 增加最小边使图为强连通

• Triple_WDF
• 2016年05月05日 20:25
• 245

## hdu 2767 Proving Equivalences

• Unin88
• 2015年03月11日 16:24
• 271

## HDU 2767 Proving Equivalences

• sky_miange
• 2015年05月10日 22:24
• 538

## HDU 2767 Proving Equivalences(强连通分量）

• u013013910
• 2014年08月25日 17:02
• 625

## hdoj 2767 Proving Equivalences 【有向图 增加最少的边使图强连通】

Proving Equivalences Time Limit: 4000/2000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Oth...
• chenzhenyu123456
• 2015年07月18日 21:04
• 605

举报原因： 您举报文章：Proving Equivalences (hdu 2767 强联通缩点) 色情 政治 抄袭 广告 招聘 骂人 其他 (最多只允许输入30个字)