关闭
当前搜索:

[三分套三分] Codeforces Gym 100307 NEERC 13 E. Easy Geometry

首先矩形的宽度对答案是单峰的 固定宽度 左端点对最大面积也是单峰的 然后三分套三分就好了#include #include #include using namespace std; typedef double ld; typedef pair abcd;inline char nc(){ static char bu...
阅读(239) 评论(0)

[凸包 三分 数形结合] BZOJ 3203 [Sdoi2013]保护出题人

可以发现yi=MAXj<=i{sum[i]−sum[j−1]x[i]+(i−j)∗d}y_i=MAX_{j<=i} \{ {{sum[i]-sum[j-1]} \over {x[i]+(i-j)*d}} \} 这个东西是个斜率的形式 (x[i]+i∗d,sum[i])(x[i]+i*d,sum[i])和(sum[j−1],j∗d)(sum[j-1],j*d) 可以发现斜率最大一定在凸包上...
阅读(129) 评论(0)

[线性规划 对偶 凸包 三分] Codeforces 605C #335 (Div. 1) C. Freelancer's Dreams

很显然的线性规划 对偶一下 maximum p∗x+q∗yai∗x+bi∗y<=1maximum\ p*x+q*y \\ ai*x+bi*y<=1 这个肯定是半平面交出一个凸包然后用直线去切 直接三分就好了 有点需要精度//ai*x+bi*y<=1 max p*x+q*y #include #include #include usi...
阅读(232) 评论(0)

[黄金分割比] 黄金分割法求单峰函数最值

论文:杨思雨--美,无处不在——浅谈“黄金分割”和信息学的联系 #include #include #include #include using namespace std; const double eps=1e-4; const double phi=(sqrt(5.0)-1)/2; double A,B,C; double L,R; int cnt=0; i...
阅读(328) 评论(0)

[三分 贪心] BZOJ 3874 [Ahoi2014]宅男计划

三分答案然后贪心 单峰的话,可以发现,如果我们外卖的次数过少,那么就会出现一些食品性价比不高的情况;如果次数过多,那么就会浪费外卖运费。 #include #include #include using namespace std; typedef long long ll; inline char nc() { static char buf[100000],*p1=buf,*p...
阅读(409) 评论(0)
    个人资料
    • 访问:309226次
    • 积分:12399
    • 等级:
    • 排名:第1311名
    • 原创:969篇
    • 转载:3篇
    • 译文:0篇
    • 评论:54条
    最新评论