关闭
当前搜索:

[反演] LOJ #509. 「LibreOJ NOI Round #1」动态几何问题

μ2(n)=∑d2|nμ(d)\mu^2(n)=\sum_{d^2|n} \mu(d) 然后就是xjb推 反正退役了 我也就弃坑了 95分代码 复杂度分析及优化详见官方题解#include #include #include #include using namespace std; typedef long long l...
阅读(157) 评论(0)

[反演 数论] 51Nod 1355 斐波那契的最小公倍数

我好菜啊 出过一万遍的原题 我怎么第一次看见啊 某乎链接 按照zyz的做法 orzzlcm(fS)==∏T⊆S,T≠∅gcd(fT)(−1)|T|+1∏T⊆S,T≠∅f(−1)|T|+1gcd{T}\begin{eqnarray} \text{lcm}(f_S)&=&\prod_{T\subseteq S,T\neq \emptyset }\text{gcd}(f_T)^{(-1)^{|T|+1...
阅读(566) 评论(1)

[数位DP 莫比乌斯反演] 2017 计蒜之道 复赛 A. 阿里云秘钥池

大概可以推出来转移是 fx=∑d|xμ(d)∑⌊P−1d⌋i=1gid=∑d|xμ(d)G(d)f_x=\sum_{d|x}\mu(d)\sum_{i=1}^{\lfloor {P-1\over d}\rfloor} g_{id}=\sum_{d|x}\mu(d)G(d) 转移是O(nlnn)O(n\ln n)的 然后就直接数位dp咯#include #include<cst...
阅读(322) 评论(1)

[杜教筛] BZOJ 4916 神犇和蒟蒻

第一问玩玩你的吧 第二问直接杜教筛 S(n)=n∗(n+1)∗(2n+1)6−∑i=2ni∗S(⌊ni⌋)S(n)={n*(n+1)*(2n+1)\over 6}-\sum _{i=2}^n i*S(\lfloor{n\over i} \rfloor)#include #include #include #include...
阅读(227) 评论(0)

[莫比乌斯反演] BZOJ 4816 [Sdoi2017]数字表格

如果我们有fibn=∏d|nfdfib_n=\prod_{d|n} f_d 那么 就有 ∏i=1n∏j=1mfibgcd(i,j)=∏i=1n∏j=1m∏d|i,d|jfd=∏d=1min(n,m)f⌊nd⌋⌊md⌋d \begin{eqnarray} \prod_{i=1}^n\prod_{j=1}^m fib_{gcd(i,j)} &=&\prod_{i=1}^n\prod_{j=1}^m...
阅读(195) 评论(0)

[数论 反演] BZOJ 4833 最小公倍佩尔数

当时比赛时灵机一动 把gigi−1g_i\over g_{i-1}喂给了OEIS 然后就找到了 233 就是这个咯 然后就水过去了 题解?题解我还没看 先挖个坑UPD:跟这个题是一毛一样的咯#include #include #include using namespace std; typedef long long ll;const...
阅读(760) 评论(0)

[分块 莫比乌斯反演] BZOJ 4815 [Cqoi2017]小Q的表格

那个神奇的关系式 其实是辗转相减的形式 稍微发现下就能知道 这其实是个一维的东西 fa,b=abgcd2(a,b)∗fgcd(a,b),gcd(a,b)f_{a,b}={ab\over gcd^2(a,b)}*f_{gcd(a,b),gcd(a,b)} 然后推一推就知道 ans=∑ni=1fi,i∗g(⌊ni⌋)ans=\sum_{i=1}^n f_{i,i}*g(\lfloor {n\ov...
阅读(297) 评论(0)

[莫比乌斯反演 伯努利数] BZOJ 2627 JZPKIL

ydc的题解 orzz 因为这道题才去学习了伯努利数 可以看这里#include #include #include using namespace std; typedef long long ll;namespace RHO{ int prime[9]={2,3,5,7,11,13,17,19,23}; unsigned long...
阅读(356) 评论(0)

[莫比乌斯反演] BZOJ 4804 欧拉心算

手推一推就知道答案是Ans=∑D=1n⌊nD⌋⌊nD⌋∑d|Dμ(d)∗ϕ(Dd)Ans=\sum_{D=1}^n \lfloor { n\over D}\rfloor\lfloor { n\over D}\rfloor\sum_{d|D}\mu(d)*\phi({D\over d})后面那个f(n)=∑d|nμ(d)∗ϕ(nd)f(n)=\sum_{d|n}\mu(d)*\phi({n\over...
阅读(671) 评论(0)

[莫比乌斯反演] CCPC 2016 Hangzhou J & HDU 5942 Just a Math Problem

记f(k)f(k)表示kk的素因子个数,g(k)=2f(k)g(k)=2^{f(k)}。 求g(1)+…+g(n)g(1)+…+g(n)。 n≤1012n\leq 10^{12}g(k)g(k)的组合意义为满足(i,j)=1(i,j)=1且ij=kij=k的对数。 所以变成求(i,j)=1(i,j)=1且ij≤nij\leq n的对数。 ∑ij≤n[(i,j)=1]===∑ij≤n∑d|i...
阅读(756) 评论(0)

[反演 莫队算法] HDU 4676 Sum Of Gcd

考虑对一堆数求一个gcd 我们记录每一个约数xx的出现次数num[x]num[x] 那么两两间gcd的和是什么呢 ∑x∗C2num[x]\sum x*C_{num[x]}^2 肯定不是 这样会有重复 猜想f(x)f(x)是关于x的函数 ∑f(x)∗C2num[x]\sum f(x)*C_{num[x]}^2 那么应该满足 ∑d|xf(d)=x\sum_{d|x} f(d)=x 因为...
阅读(156) 评论(0)

[莫比乌斯反演] 51Nod 1584 加权约数和

这个网上找不到题解嘛 那我就来写一发!(式子略) 不是我不想写 是我真的不会用markdown 我立一发flag 除夕我要学markdown 完成题解补完计划Ans=2∑i=1n∑j=1ii∗σ(ij)−∑i=1ni∗σ(i2) Ans= 2\sum _{i=1}^n \sum _{j=1}^i i*\sigma(ij) - \sum _{i=1}^n i*\sigma(i^2)因为∑i=1n...
阅读(391) 评论(0)

[杜教筛] BZOJ 3512 DZY Loves Math IV

JC大爷出的神题 送一发链接当我会做了:http://duxyz.github.io/solution/2014/04/03/DZY-Loves-Math-4/ 其中有个式子不是那么显然需要理解下 实在不行就自己手写个例子 #include #include #include #include typedef long long ll; using namespace std; u...
阅读(518) 评论(0)

[莫比乌斯反演 复杂度分析] 51Nod 1222 最小公倍数计数

这么反演一通 转化为abc[暴力] HDU 4473 Exam  a 以立方根的复杂度枚举一通再讨论下就好了 既然糖老师强调复杂度分析 那就来分析分析 对于子问题  abc 复杂度是n的2/3次的 再套一重外循环是n的5/6次? 肯定是我分析错了 #include #include #include #include typedef long long ll;...
阅读(318) 评论(0)

[杜教筛 约数和前缀和] 51Nod 1220 约数之和

吉丽博客传送门:http://jiruyi910387714.is-programmer.com/posts/195270.html 套用公式后反演 然后杜教筛求和 比较有意思的是其间我算了两个值 后来发现这两个值竟然是相等的 都可以由约数和前缀和推导过来 #include #include #include #include typedef long l...
阅读(643) 评论(1)

[杜教筛 约数个数前缀和] BZOJ 4176 Lucas的数论

吉丽博客传送门:http://jiruyi910387714.is-programmer.com/posts/195270.html 套用陈老师r老师等式后反演 #include #include #include #include typedef long long ll; using namespace std; using namespace std::tr1;...
阅读(497) 评论(1)

[杜教筛] 51Nod 1227 平均最小公倍数

糖老师博客传送门:http://blog.csdn.net/skywalkert/article/details/50500009 跟最小公倍数类似 求phi·id的前缀和 把phi卷上一个1 #include #include #include #include using namespace std; using namespace std::tr1; typedef long ...
阅读(201) 评论(0)

[杜教筛] 51Nod 1238 最小公倍数之和 V3

比最大公约数之和要难搞一些 吉丽博客传送门:http://jiruyi910387714.is-programmer.com/posts/195270.html 这道题两个要点 首先 ∑1 还有就是对于phi(i)*i*i也就是phi·id·id的前缀和 我们单独卷一下phi  (phi*1)·id·id=id·id·id #include #include #includ...
阅读(483) 评论(0)

[杜教筛] 51Nod 1237 最大公约数之和 V3

ans = ∑1       = ∑1 直接用杜教筛跑欧拉函数前缀和就好了 #include #include #include #include typedef long long ll; using namespace std; using namespace std::tr1; const int maxn=10000000; int prime[100000...
阅读(263) 评论(0)

[杜教筛] HDU 5608 function

可以nlnn的时间预处理下 #include #include #include #include using namespace std; using namespace std::tr1; typedef long long ll; const ll P=1e9+7; const ll inv=(P+1)/3; const int maxn=1000000; inline vo...
阅读(208) 评论(0)
37条 共2页1 2 下一页 尾页
    个人资料
    • 访问:309225次
    • 积分:12399
    • 等级:
    • 排名:第1311名
    • 原创:969篇
    • 转载:3篇
    • 译文:0篇
    • 评论:54条
    最新评论